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Main results: local case

Recall the following theorem (without boundary data) from Lecture 2.

Theorem 4 (Grigor'yan-Verbitsky 2019)

Let (M, m) be an arbitrary weighted manifold. Let Q2 C M be a
connected open subset of M with a finite Green function G**. Suppose

V,f € C(Q), where f >0, f Z0in Q. Let u € C?(Q) satisfy

inthecaseq >0: —Au+ Vu?>Ff inQ, u>0, (1)
or

inthecaseq < 0: —Au+ Wi <Ff inQ, u>D0. (2)
Set h = G**f and assume that h < oo in Q. Assume also that
G(h9V)(x) (respectively G*(xuh9V)(x) in the case 0 < q < 1)
is well-defined for all x € SQ. )
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Main results: local case

(continuation)

Theorem 4 (statements (i)-(ii))

Then the following statements hold for all x € SQ.
(i) If g =1, then

u(x) > h(x)e TS V) (3)
(ii) If @ > 1, then necessarily
—(q — 1) G*(h7V)(x) < h(x), (4)

and the following estimate holds:

i) = h(x) - (5)

1+ (a— 1) St o
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Main results: local case

(continuation)

Theorem 4 (statements (iii)-(iv))
(iii) If0 < q < 1, then

1
G2 (xuh?V)(x) | =
h(x)

u(x) > h(x) {1 —(1—-q) (6)

_|_

(iv) If @ < 0 and limy_,5_q u(y) = 0, then necessarily (4) holds, and

1
1—q

G#(h7V)(x)
h(x)

(7)

u(x) < h(x) [1 —(1—q)

v

Remarks. 1. Condition f # 0 implies h = Gf > 0 in Q.
2. No boundary conditions are imposed in the case g > 0.
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Extensions of Theorem 3: local case

The proof of Theorem 4 reduces to Theorem 3 that deals with relatively
compact sets 2 C M, using an exhaustion of Q = | =, Q« by means of
increasing relatively compact sets €, with smooth boundary, and
approximation of f. We omit the details (see [Grigor'yan-Verbitsky 2019],
Proof of Theorem 3.1).

In the next theorem we give estimates of solutions u of semilinear
inequalities with both » = 0 and f = 0. (Theorem 4 requires f £ 0.)

Such results are applicable to the so-called gauge function for Schrodinger
equations (g = 1), large solutions for super-linear equations (g > 1), or
ground state solutions (—oo < @ < 1) to the corresponding equations
and inequalities in unbounded domains in R" or on noncompact
Riemannian manifolds.
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Main results: local case

Theorem 5 (Grigor'yan-Verbitsky 2019)

Let (M, m) be an arbitrary weighted manifold. Let Q2 C M be a
connected open subset of M with a finite Green function G**.
Suppose V € C(2). Let u € C?(RQ) satisfy either the inequality

—Au+Vuil>0, u>0in9Q, ifq > 0, (8)

or
—Au+Vui<0, u>0inQ, ifq<DO. (9)

Assume also that GV (x) (respectively G*(xuV)(x) in the case

0 < g < 1) is well-defined for all x € 2. Then the following statements

hold for all x € Q2.
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Main results: local case

(continuation)

Theorem 5 (statements (i)-(ii))
(i) Ifq =1 and

liminf u(y) >1 (10)
y—0o0Q2
then )
u(x) > e & V), (11)
(if) Ifq > 1 and
lim wu(y) =400, (12)
Y—>000 2

then necessarily G*V(x) > 0, and

1

u(x) > [(a-1)Gv(x)| . (13)

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 9 /44



Main results: local case

(continuation)

Theorem 5 (statements (iii)-(iv))
(i) IF0 < q < 1, then

1

u(x) > |—(1 - q) G2 (xuV)(x) (14)

(iv) If g < 0 and limy_,5_q u(y) = 0, then necessarily GV (x) < 0,
and

u(x) < [~(1 — @) G2V . 1)

Remarks. 1. The proof of Theorem 5 is similar to that of Theorem 4,
using an exhaustion Q = Jp—; Q« by increasing relatively compact sets
Qy, so that G* 1 G (see [Grigor'yan-Verbitsky 2019], Proof of
Theorem 3.3).
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Remarks

(continuation)

2. The boundary conditions imposed in the cases ¢ > 1 and g < 0 are

essential for the estimates. Stronger two-sided estimates for g = 1
[Frazier-Verbitsky 2017/21] if V < 0, true for o0 = —V € MT(Q).

3. The only case where we impose no boundary conditions is in
sublinear problems where 0 < g < 1. If V < 0, we may assume

o =—V &€ MT(R). Then any nontrivial (generalized) solution u > 0
to the inequality —Awu > o u9 in Q is strictly positive, and satisfies the
estimate

u(x) > (1 = q) G%(x)} Y xeq. (16)

1
The constant (1 — @) I-49 in this inequality is sharp.

4. Analogues of (16) for 0 < @ < 1 will be proved below for non-local
operators and more general kernels in place of G*2. Two-sided estimates in
the one-dimensional example = (0, +00) discussed in the Introduction.
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Nonlinear integral equations with general positive kernel

Non-local case

Let (€2, m) be a locally compact measure space. The theorems below give
some sharp existence results together with pointwise estimates of solutions
0<u<+4oodm-ae (forg>1, V<0 0orqg<0, V >0):

u(x) + /Q K(x,y) u(y)? V(y) dm(y) = h(x) in Q. (17)

Here K : Q X Q — [0, +0c] a Borel measurable kernel. For
p € MT(R), we set

Kp(x) = /Q K(x,y) du(y).
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Nonlinear integral equations with general positive kernel

(continuation)

More generally, for o € MT(R) (in place of do = —V dm), we
consider the equation

u=K(uvdo)+h, u>0in Q,
which serves as an analogue of the equation
—Au=ocuv4+pu, u>0in Q, (18)

where u is a generalized solution with zero boundary values.

In this case, K = G* is the Green function of the Laplacian A, and

h = G4 is the Green potential of a measure p in Q.

For bounded C?-domains , and u € L}(R, qdx) this coincides with
the notion of a very weak solution. Here 9q(x) = dist(x, 2°).
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Existence and estimates of solutions (g > 1)

Theorem 6 (Kalton-Verbitsky 1999)

Let (2, 0) be a locally compact measure space, K > 0 a kernel, and
h > 0 a measurable function. For q > 1, suppose

K(hdo)(x) < (1- l)qi h(x) do-ae. in Q. (19)
q’/ q—1

Then u = K(u9do) + h has a minimal solution u such that

h(x) < u(x) < Ll h(x) do-ae. in Q. (20)

v

q .
Remarks. 1. The extra constant (1 — %) < 1 ensures existence and

provides an upper bound. 2. A matching necessary condition holds for
Green's kernels (with 1) and quasi-metric kernels. 3. A sharper lower
bound holds for all solutions u (Theorems 3-5 in the local case).
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Existence and estimates of solutions (g < 0)

Theorem 7 (Grigor'yan-Verbitsky 2020)

Forq < 0ando,u >0, h = Kpu, suppose the following condition holds,
1\9 1 .
K(hido)(x) < (1 - —) " h(x) do-ae.inQ. (21)
q/ 1—gq

Then u + K(u9do) = h has a maximal solution u such that

1 h(x) < u(x) < h(x) do-a.e. in Q. (22)

1 —

Remarks. 1. Theorems 6—7 combined with Theorems 3-5 give necessary
and sufficient conditions for the existence of weak solutions (up to a
constant). 2. The constants in (19) and (21) are smaller than the

constant MIT” in the necessary conditions for both g > 1 and g < 0.
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Proof of Theorem 7

Thorem 6 (g > 1) is well-known, so we give only a proof of Theorem 7 in
the case g < 0. Let us assume that

K(h9do)(x) < ah(x) do — a.e. in QQ,

for some constant @ > 0, where 0 < h < 400 a.e.
Set ug = h, and construct a sequence of consecutive iterations uy by

Ugy1 + K(uZda) =h, k=0,1,2,....
Clearly, by the above inequality,

(1 — a)h(x) < u1(x) = h(x) — K(h9do)(x) < h(x) = up(x).
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Proof of Theorem 7

(continuation)
We set bg = 1, by = 1 — a, and continue the argument by induction.
Suppose that for some k =1,2,...

b h(x) < uk(x) < ug_1(x) in Q.
Since g < 0 and o > 0, we deduce using the above estimates,
(1 — ab}) h(x) < h(x) — b} K(h9do)(x) < h(x) — K(uldo)(x),
where the right-hand side h — K(uldo) = uk41. Clearly,
uk+1(x) < h(x) — K(u!_;do)(x) = uk(x).
Hence,

bi+1 h(x) < ugs1(x) < uk(x), where b1 =1 — ab).

We need to pick @ > 0 small enough, so that b, | b, where b > 0, and
b=1-—ab“.
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Proof of Theorem 7

(continuation)
In other words, we are solving the equation

1 —x

a

— x4

by consecutive iterations by =1 — ab,‘(7 starting from the initial value
by = 1. Clearly, this equation has a solution 0 < x < 1 if and only if
0 < a< a wherey = 1=x is the tangent line to the convex curve

dx
y = x9. Here the optimal value a, is found by equating the derivatives,

and solving the system of equations
1 — x, 1

— -1 _
Xf — ’ qx:! — T
a dx

which gives
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Proof of Theorem 7

(continuation)

Letting @ = a,, we see that by the convexity of y = x9, there is a unique
solution x, = % and by induction, x, < bgy1 < b < 1, so that
q

bl b=x, = > 0.

1 —

Q=

From this it follows that the desired inequality holds for all k =1,2,....
Passing to the limit as k — oo, and using the monotone convergence
theorem shows that u = limyg_, o ug is a solution of the integral equation

such that
bh(x) < u(x) < up(x) = h(x).

Moreover, it is easy to see by construction that u is a maximal solution,
that is, if & is another non-negative solution to (17), then & < wy for
every k =0,1,2,..., and consequently i < u in €. []
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Lower estimates for homogeneous equations (0 < g < 1)

The weak maximum principle

A kernel K on 2 X S satisfies the weak maximum principle (WMP)
with constant b > 1 if, for any v € MT(Q) with compact support,

sup{KV(y): y € Q} < b sup {Kl/(y): y € suppu}.
We consider the homogeneous sublinear equation (0 < g < 1, h = 0)
u= K(uido), u>0in Q,

where &0 € M1 (Q).

This generalizes the sublinear elliptic equation

(—-A)2u=cud inR", liminfu=0,
X—r00

for0<a<norinQCR"withd< a<2 u=0in QF°.
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Lower estimates for homogeneous equations (0 < g < 1)

(continuation)

Theorem 8 (Grigor'yan-Verbitsky 2020)

Let 0 < g < 1, (2, 0) a locally compact measure space. Let K be a
non-negative kernel on 2 X S which satisfies the (WMP). Then any
nontrivial nonnegative solution u to u > K(u9dao) satisfies

1
q
q

u(x) > (1 -— q)ﬁb_IT [Ka(x)} "7 do-a.e. in Q. (23))

1
Remarks. 1. The constant (1 — g)1-9 in the case b = 1 is sharp.
2. Lower estimate in Theorem 8 fails without the (WMP).

3. Lower estimate holds for all x € Q: K(u9do)(x) < u(x) < 4+o0.
4. There are analogues for inhomogeneous equations, Vq € R \ {0}.
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Non-local case, inhomogeneous equations

Let K be a kernel on €2 X €2. Consider the inhomogeneous integral

equation
u= K(uido)+ h, u>0in Q,

where 0 € M1 (), and h > 0 (h £ 0).

This is a generalization of the semilinear elliptic equation

(—A)2u=0cu?+p inR", liminfu=0,

X—r 00

for0<a<noin0<a<2u=0inQ2°h=G%u, u>0.
We introduce the modified kernel

’ .

K(x,y) =

h(x) h(y)’
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The weak domination principle

Let h: Q — (0, 4+o00] be a lower semicontinuous function on . Let
K :Q x Q — [0,+00] be a lower semicontinuous kernel. Then K

satisfies the weak domination principle (WDP) with respect to h if:
For any compactly supported v € M™(S2) and any constant M > 0,

Kv(x) < M h(x), Vx € supp(v) = Kr(x) < bMh(x), Vx € Q,

whenever Kv is bounded (or v has finite energy: [ Kvdv < 400).

Remark. The kernel K satisfies the (WDP) if the modified kernel K
satisfies the (WMP) provided for any compactly supported v € M ™ ()
there exist compactly supported v, € M*(Q), Kv, € C(RQ),

Kv, T+ Kv in Q.
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Non-local case, main theorem

Theorem 9 (Grigor'yan-Verbitsky 2020)

Let h > 0 be a lower semicontinuous function in 2. Let K be a kernel in
Q X € such that the (WMP) holds for K, h. Suppose that u > 0
satisfies u > K(u9dao) 4+ h if ¢ > 0, and the opposite if q < 0.

(i)Ifg >0 (q #1), we have

() 2 1) {14 o] (1.4 1= DL =), e

where in the case q > 1 necessarily

K(h9do)(x) < L h(x), (25)
q—1

for all x € S such that K(u9do)(x) + h(x) < u(x) < +oc.
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Non-local case, main theorem

(continuation)

Theorem 9 (statements (ii), (iii))
(ii) In the case q = 1,

p—1 K(hdo)(x)

u(x) > h(x) [1 + b (e () — 1)}, x € Q.

(iii) If ¢ < 0, then

) < b {1 = o[t = (1= E= DT

for x € €, and necessarily

1—q) K(h"dff)(X))ﬁ} } )

(26)

b
K(h?do)(x) < -—— [1 —1- b—l)l—q} h(x), (28)
forall x € Q: 0 < u(x) + K(u9do)(x) < h(x) < +oc.
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Some additional references

1. Linear case g = 1 (Schrodinger equations): lower estimates of
perturbed Green's functions on domains and manifolds foroc = —V < 0
[Grigor'yan-Hansen 2008]. For o > 0, [Frazier-Verbitsky 2017],
[Frazier-Nazarov-Verbitsky 2014] two-sided estimates of perturbed Green's
functions, quasimetric kernels K, arbitrary o > 0 (under the spectrum
of the Schrodinger operator). [Murata 1986], [Pinchover 2007] nice o.

2. Superlinear case q > 1: For o > 0, [Brezis-Cabré 1998] (for the
Laplacian —A only), [Kalton-Verbitsky 1999] two-sided estimates
(quasimetric kernels, but no sharp constants).

3. Sublinear case 0 < g < 1: o > 0, bounded solutions, —A on R"
[Brezis-Kamin 1992]; two-sided estimates [Cao-Verbitsky 2017]; existence
of weak solutions, (WMP)-kernels [Quinn-Verbitsky 2018] .
4. Negative exponents: g < 0, only o = 4+ 8q(x)~? (8 > 0)
Jq(x) = dist(x, 9R) [Dupaigne-Ghergu-Radulescu 2007].
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Nonlinear integral inequalities

The proofs of Theorem 8 and Theorem 9 are given below.
Let Q be locally compact (possibly totally discrete), o € MT(Q),
K > 0 a kernel on £2 X €2. Consider the nonlinear inequality

u(x) > Au(x) +1 do — a.e. in Q,
where A is the nonlinear map
Au = K(g(u)da), 1< u< 400 do — a.e.

Here g: [1,a) — (0, +00), is non-decreasing, continuous, where
a € (1,400]. Let g(a) = lim,_,,— g(t) € (0, +00], and extend g
from [1, a] to [1, +o00], by setting g(t) := g(a) fora < t < 4o0.

Our goal: sharp lower estimates of u, better than the trivial u > 1.

We assume o := g(1) > 0. In the case a = 0, a simple example:
g(t) =logt (t > 1), u = 1 shows no self-improving estimates.
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Nonlinear integral inequalities

(continuation)

Remark. Since a = g(1) > 0, WLOG we assume a = 1, so that
g:[1l,00] — [1,400], g(1)=1.
It is convenient to define a new measure:
dv = g(u)do, sothat Kv = Au,
and a new function ¢: [0, +o00] — [1, +00] continuous non-decreasing,
o(t) =g(t+1), ¢(0)=1.
Observe that since u > Au + 1, we have
dv = g(u)do > g(Au + 1)do = ¢(Kv) do.
lterating the preceding inequality, we obtain

dv > ¢(Kv)do > qS(K(qS(KV) da) da) > ...
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Nonlinear integral inequalities

(continuation)

Notice that Kv > Ko, since
¢(0) = g(1) > 1.
Then ¢(Kv) > ¢(Ko), and consequently,
u>1+Kv> 1+K(¢(Ky)da) >...>1+ Kaj,
where y = 1,2,..., and o; is defined by induction: o9 = o, and
doj = ¢(Koj_1)do, j > 1.
We next prove a series of lemmas in order to estimate

KO‘jZK[qﬁ(KO'j_l)da'], j:1,2,....
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A key real variable (rearrangements) lemma

Lemma (rearrangements)

Let (2, o) be a o-finite measure space, and let a = o(2) < +o00. Let
f: Q — [0,+400] be a measurable function. Let ¢: [0,a) — [0, +00)
be a continuous, monotone non-decreasing function, and set

¢(a) := lim,_, ,— ¢(t) € (0,+0c]. Then the following inequality holds:

o(Q)
| e de < [ 0oz €2 £(2) < FND) do().
0 Q

A

Proof: Reduction to discrete case, rearrangement in non-decreasing order.
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A key potential theory (integration by-parts) lemma

If ¢: [0,a) — [0, 4+00) is non-decreasing continuous, we can extend it
to [0, +o0] by ¢(t) := lim,_, ,— ¢(s) for t € [a, +o0]. Here
a € [0, +o0]. So WLOG we may assume ¢ is defined on [0, +oc].

Lemma (by-parts)

Suppose v € MT(RQ), x € Q. Let a:=v(Q) € (0, +00]. Suppose K
is a non-negative (WMP)-kernel with b > 1, and
¢: [0, +00] — [0, +00] is non-decreasing, continuous. Then

Kv(x)
/ o(t)dt < K[qs(b Ku)du} (x).
0

Idea of the proof: Fix x € €. Use the rearrangements lemma with
dv = K(x,:)do, f(y) = Kv(y), and apply the (WMP) appropriately.
The details are given below.
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Proof of the by-parts lemma

Fix x € Q, and suppose first Kv(x) < oo. WLOG assume that
Kv(x) > 0. For any y € Q, set

E,={zcQ: Kv(z) < Kv(y)}.
Clearly,
Kvg,(w) < Kv(w) < Kv(y) for all w € E,.
Hence by the (WMP) applied to vg, (WLOG assume E,, is compact),
Kvg,(w) < bKv(y) for all w € Q.

In particular, with w = x,

Kvg,(x) = ] K(x,z)dv(z) < b Kv(y).
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Proof of the by-parts lemma

(continuation)

Let f(y) = Kv(y), then E, = {z € Q: f(z) < f(y)}.
Now let do(y) = K(x,y) dv(y), so that o(2) = Kv(x).
Then by the rearrangements lemma and the preceding estimate,

/ " (e e < | #( [ dot))day)

y

=/Q¢</Ey K(x,z)dv(Z))K(XaY)dV()’)
< K[qﬁ(b Ku)du} (x).
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Proof of the by-parts lemma

(continuation)
In the remaining case Kv(x) = 400, let us show that

K{qb(b Kl/)dl/] (x) = 400 as well. Denote by E the set of all points
y € Q for which Kv(y) < 1 (assume WLOG E is compact). Then

Kve(y) <1, for all y € E.
Hence, by the (WMP) applied to vg,

Kve(w) < b for all w € Q.
In particular, Kvg(x) < b, and so

Kvgc(x) = 4o0.
Notice that Kv(y) > 1 for all y € E€. Thus,
K [qs(b Ky)du] (x) > K [qs(b Ky)dch] (x)
> ¢(b) Kvee(x) = +o00. [
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lterated by-parts lemma

Suppose ¢: [0, +00) — [0, +00] is a non-decreasing continuous
function. For v € M™(Q), let f; := Kv, dvy := ¢(h) dv, and

fk = K (¢(fk_1)dl/) . k = 2, 3, c oo (29)

dvy = ¢(f) dv = ¢(Kvk_1)dv, k =2,3,.... (30)
Consequently, if = Kv, h = Kv; = K (¢(Kv)dv), and

fe = Kvg1 = K(o[K(-- - [¢p(Kv)dv]-- - )dv]dv).
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lterated by-parts lemma

Lemma (iterations)

Let v € MT(Q), K, ¢ satisfy the assumptions of the preceding Lemma.
Set

P(t) := p(b~'t), t>0.
Then for all x € Q,

¥ (Kv(x)) < Kyj(x), j=1,2,...,

where dvj = ¢(Kvj_1)dv are defined by iterations, and

t
;(t) = /0 o y_1(s)ds, wo(t):=t, t>0.

v

Proof: Repeated use of the (WMP) and the by-parts lemma. See details
in [Grigor'yan-Verbitsky 2020], Lemma 2.7.
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Corollary: ¢(t) =t9, g > 0

The following is immediate from the iterations Lemma.

Corollary (special case)

Suppose v € MT(R), and K is a (WMP)-kernel with b > 1. If g > 0,
then, for all x € Q and j > 1,

L+g+ta , i1
] < c(q,j) bIHIH+ ) Kuj(x),

[Ku(x)
where

J .
c(a,j)=J[A+aq+---+47".
k=1

In particular, in the case q = 1, for all x € Q and j > 1 we have

[Ku(x)rr1 < (j + 1)1 6d Ku;(x).

Remark. A direct proof by induction gives constants that grow too fast.
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Proof of Theorem 8 (0 < g < 1)
Let u > K(u9do) do-a.e. Fora > 0, set

E.={y € Q: u(y) > a}.
Let dv = xg,do. Suppose u(x) > K(u9do)(x), where x € Q. Then
u(x) > K(uvdo)(x) > a%9Kv(x), x € Q.

lterating this inequality, as in the iterated potential theory lemma, we

obtain "
u(x) > a“ " Kvg(x),

where v is defined by (30) with ¢(t) = t9, i.e., dv; = (Kv)9dv,
dvy := (Kvk_1)9dv, k=2,3,....
Hence, by the Corollary,

u(x) > c(q, k)"t a9 pmaltat et (KV(X))1+q+---+q" .
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Proof of Theorem 8

(continuation)

Notice that, since 0 < g < 1,

k .
c(q, k) = H(l +qg+---+ qj)q"—f
Jj=1

k
<[la-a) " <@ —q~ -7
j=1

Consequently,
u(x) > (1 = q)= 0 a0 pmalthatHah (ke (x)) ot
Letting k — 400, we obtain
u(x) > (1 — q)1=9 7T (Ku(x)) = .

Finally, letting @ — 0% yields (23) by the monotone convergence

theorem. B
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Integral inequalities for nondecreasing nonlinearities

Let g: [1,a) — [1, +00) be a nondecreasing, continuous function.
We set

t ds
F(t)=/1 o =L (31)

Here F is defined on [1, 00). The inverse function F~! is defined on
[0, @), and takes values in [1, 00), where

Too  ds
a'z/l g(s) 32

The following theorem is deduced from the iterations lemma and some
ODE techniques.
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Integral inequalities for nondecreasing nonlinearities

Theorem 10 (lower estimate)

Let 0 € M1(Q), and let K be a (WMP)-kernel on Q with constant

b >1 Letg:[1l,4+00) — [1,400) be nondecreasing, continuous. If
Au = K(g(u)do), andu > Au+ 1 do-a.e., then

u(x) > 140 [F‘l (b—lKa(x)) _ 1} , (33)

for all x € Q such that Au(x) + 1 < u(x) < 400, where necessarily

+oo  ds

g(s)

b~ 'Ko(x) < a :=/1 (34)

v

Remark. We will give below a proof of Theorem 10. A similar proof of
Theorem 11 for noninreasing g will be omitted.
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Special cases
We now consider some special cases of Theorem 10 for g(t) = t9.

Corollary

Let g > 0. Under the assumptions of Theorem 10, suppose u satisfies
u> K(udo)+1 do-a.e.

If q # 1, then the following inequality holds:

1

u(x) >1+06 [(1 +(1-— q)b_lKa(x))m _ 1},

b
where necessarily Ko (x) < p—] if q > 1,
q —

for all x € Q2 such that K(u9do)(x)+1 < u(x) < +o00. Ifq = 1, then

u(x) > 140 (&7 K7 1),

y
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Integral inequalities for nonincreasing nonlinearities

Theorem 11 (upper estimate)

Let o0 € M1(R), and let K be a (WMP)-kernel (with constant b > 1).
Let g: (0,1] — [1, +00) be nonincreasing, continuous on (0, 1]. Set

F(t)=/t1g((t:), 0<t<1.

If Au = K(g(u)do), and0 < u < —Au + 1 do-a.e., then
u(x) <1—b [1 _ F—l(b—lKa(x))] ,

and the following necessary condition holds:

1 ds
Ko(x) <bF(1—b71) =b /1_5—1 et

for all x € Q such that 0 < u(x) < —Au(x) + 1.
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Integral inequalities in special cases

We now consider the special case g(t) = t9, g < 0.

Corollary
Let q < 0. Under the assumptions of Theorem 11, suppose u satisfies

0<u< —K(uldo)+1 do-a.e.

Then the following inequality holds:
1
0 < u(x) < —b[(l +(1— q)b—lKa(x)) = _ 1} +1,

b
where necessarily Ko (x) < 1_a [1 — (1 - b_l)l_q] )

for all x € Q such that 0 < u(x) < —K(u9do)(x) + 1.
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