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3 J. Malý and W. Ziemer, Fine Regularity of Solutions of Elliptic Partial
Di↵erential Equations, Math. Surveys Monogr., 51, Amer. Math.
Soc., Providence, RI, 1997.

4 V. G. Maz’ya, Sobolev Spaces, with Applications to Elliptic Partial
Di↵erential Equations, 2nd revised augm. ed., Grundlehren der math.
Wissenschaften, 342, Springer, Berlin, 2011.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 3 / 50



Homogeneous integral equations with Wol↵ potentials

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Fix � 2 M+

(Rn

).
In Lecture 5, we studied the integral equation with W = W↵,p,

u(x) = W(u

q

d�)(x), u � 0, x 2 Rn. (1)

Recall that equation (1) is understood d�-a.e., and u < 1 d�-a.e., or
equivalently u 2 L

q

loc

(Rn,�). We can always choose a representative

which coincides with u d�-a.e., defined for all x 2 Rn, such that (1) is
understood everywhere in Rn.

We also considered the corresponding subsolutions u � 0 such that

u(x)  W(u

q

d�)(x) < 1, x 2 Rn, (2)

and supersolutions u � 0 such that

W(u

q

d�)(x)  u(x) < 1, x 2 Rn. (3)
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Integral equations with Wol↵ potentials
For any ⌫ 2 M+

(Rn

) and x 2 Rn so that W⌫(x) < 1, we set

�⌫(x) := W⌫(x)

✓

W[(W⌫)qd�](x)

W⌫(x)

◆

p�1

p�1�q

, (4)

�(x) := sup{�⌫(x) : ⌫ 2 M+

(Rn

), W⌫(x) < 1}. (5)

In Lecture 5, we stated the following theorem (a proof is given below).

Theorem 25 (Verbitsky 2021)

Any nontrivial solution u to (1) satisfies the following estimates,

C �(x)  u(x)  �(x), x 2 Rn, (6)

with positive constant C = C(↵, p, q, n). Moreover, the upper bound
holds for any subsolution u, whereas the lower bound in holds for any
nontrivial supersolution u.
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Integral equations with Wol↵ potentials
In Lecture 5, we also proved the following three lemmas.

Lemma 1

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).

Suppose u is a subsolution to (1). Then

u(x)  �(x), x 2 Rn, (7)

provided u(x)  W(u

q

d�)(x) < 1. In paticular, (7) holds d�-a.e.

Lemma 2

Let ⌫,� 2 M+

(Rn

). Then for C = C(↵, p, q, n) > 0,

W[(W⌫)qd�](x)  C (W⌫(x))
q

p�1

⇥
h

W�(x) + (K�(x))
p�1�q

p�1

i

, x 2 Rn.
(8)
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Integral equations with Wol↵ potentials

Lemma 3

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).

Then there exist constants C

i

= C

i

(↵, p, q, n) > 0 (i = 1, 2) so that

C

1

�(x)  (W�(x))
p�1

p�1�q

+ K�(x)  C

2

�(x), (9)

where the lower estimate holds for all x 2 Rn, whereas the upper estimate
holds provided W�(x) < 1 and K�(x) < 1.
If W� 6⌘ 1 and K� 6⌘ 1, then � < 1 d�-a.e., and the upper
estimate in (9) holds d�-a.e.

We are now ready to complete the proof of Theorem 25.
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Integral equations with Wol↵ potentials

Proof of Theorem 25. The upper bound in (6) follows from Lemma 1.

The lower bound in Theorem 25 is a consequence of Lemma 3 and the
following lower estimate [Cao-V. 2017], for any nontrivial supersolution
u and a positive constant C = C(↵, p, q, n),

C

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

 u(x), x 2 Rn. (10)

The proof of estimate (10) is split into two parts:

(A) C (W�(x))
p�1

p�1�q  u(x), 8x 2 Rn, (11)

(B) C K�(x)  u(x), 8x 2 Rn. (12)
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Proof of the lower bound (A)

We will need the following lemma (an analogue of the integration by parts
lemma in Lecture 3).

Lemma 4 (iterated Wol↵ potentials)

Let 1 < p < 1, 0 < ↵ < n

p

, � 2 M+

(Rn

). Then, for all r > 0,

c
r

p�1

(W�(x))
r

p�1

+1  W [(W�)rd�] (x), x 2 Rn, (13)

where c = c(↵, p, n) is a positive constant (which does not depend on r).

Proof of Lemma 4. For t > 0, obviously,

W�(y) =

Z

t

0

✓

�(B(y , s))

s

n�↵p

◆

1

p�1

ds

s

+

Z 1

t

✓

�(B(y , s))

s

n�↵p

◆

1

p�1

ds

s

.
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Proof of Lemma 4

By the lemma on Wol↵ potentials in Lecture 5, there exists a positive
constant C = C(p,↵, n) so that, for any ball B = B(x, t),

inf

B(x,t)
W� � C

Z 1

t

✓

�(B(x, s))

s

n�↵p

◆

1

p�1

ds

s

. (14)

Notice that, for the iterated Wol↵ potential we have

W[(W�)rd�](x) =

Z 1

0

 

R

B(x,t)[W�(y)]rd�(y)

t

n�↵p

!

1

p�1

dt

t

.

Using (14), we estimate: W[(W�)rd�](x) �

� C

r

p�1

Z 1

0

h

Z 1

t

✓

�(B(x, s))

s

n�↵p

◆

1

p�1

ds

s

i

r

p�1

✓

�(B(x, t))

t

n�↵p

◆

1

p�1

dt

t

.
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Proof of Lemma 4

Integrating by parts on the right-hand side, we deduce

W[(W�)rd�](x)

�
C

r

p�1

r

p�1

+ 1

 

Z 1

0

✓

�(B(x, s))

s

n�↵p

◆

1

p�1

ds

s

!

r

p�1

+1

=

C

r

p�1

r

p�1

+ 1

(W

1,p�(x))
r

p�1

+1 .

Since r

p�1

+ 1  e

r

p�1 , we have

C

r

p�1

r

p�1

+ 1

� (C e

�1

)

r

p�1 ,

which completes the proof of (13) with c = C e

�1.
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Proof of the lower bound (A)

To prove estimate (A), let d! = u

q

d�. Fix x 2 Rn and pick R > |x|.
Let B = B(0,R), and d�

B

= �
B

d�. Since u is a supersolution,

u(x) � W [(W!)

q

d�
B

] (x)

=

Z 1

0

 

1

t

n�p

Z

B(x,t)\B

[W!(z)]

q

d�(z)

!

1

p�1

dt

t

.

Obviously, inf
B(x,t)\B

[W!] � inf

B

[W!]. By the Wol↵ potential lemma
again, there exists C = C(↵, p, n) > 0 so that

inf

B

[W!] � C

Z 1

R

✓

!(B(0, s)

s

n�p

◆

1

p�1

ds

s

.
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Proof of the lower bound (A)

Combining the preceding estimates, we estimate

u(x) � (C M(R))

q

p�1

W�
B

(x),

where

M(R)

:

=

Z 1

R

✓

!(B(0, s)

s

n�p

◆

1

p�1

ds

s

> 0.

We use this estimate in (3), and invoke Lemma 4 with r = q

and �
B

in place of �. This yields

u(x) � W(u

q

d�
B

)(x)

� (C M(R))

(

q

p�1

)

2

W [(W�
B

)

q

d�
B

] (x)

� c
q

p�1

(C M(R))

(

q

p�1

)

2

[W�
B

(x)]

1+

q

p�1 .
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Proof of the lower bound (A)

Iterating this procedure and using Lemma 4 with r = q

P

j�1

k=0

⇣

q

p�1

⌘

k

and �
B

in place of �, we deduce by induction,

u(x) � c
P

j

k=1

k

⇣
q

p�1

⌘
k

(C M(R))

⇣
q

p�1

⌘
j+1

[W�
B

(x)]

P
j

k=0

⇣
q

p�1

⌘
k

,

for all j = 2, 3, . . .. Since 0 < q < p � 1, obviously

1
X

k=1

k

⇣

q

p�1

⌘

k

< 1.

Letting j ! 1 in the preceding estimate we obtain

u(x) � C [W�
B

(x)]

p�1

p�1�q , B = B(0,R), R > |x|,

where C = C(↵, p, q, n). Letting R ! 1 yields (A) for all x 2 Rn.
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Proof of the lower bound (B)
We will need the following key lemma. Its proof is based on Vitali’s
covering lemma, and weak-type maximal function inequalities.

Lemma 5

Let 1 < p < 1, 0 < q < p � 1, 0 < ↵ < n

p

, and � 2 M+

(Rn

).

Suppose u 2 L

q

loc

(Rn, d�) is a nontrivial supersolution. Then there
exists a constant C = C(↵, p, q, n) so that, for every ball B,

{(B)  C

✓

Z

B

u

q

d�

◆

p�1�q

q(p�1)

. (15)

Remarks. 1. If u 2 L

q

(Rn, d�) globally in Lemma 5, then clearly

{  C

✓

Z

Rn

u

q

d�

◆

p�1�q

q(p�1)

. (16)

2. An analogue of (16) was proved for (QS)&(WMP) kernels in Lect. 4.
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Proof of the lower bound (B)
Proof of Lemma 5. Let d! = u

q

d� 2 M+

(Rn

). For ⌫ 2 M+

(Rn

),
consider the centered maximal function

M!⌫(y) = sup

⇢>0



⌫(B(y , ⇢
5

))

!(B(y , ⇢))

�

, y 2 Rn, (17)

where we follow the convention 0

0

= 0. Let

E

t

= {y 2 Rn

: M!⌫(y) > t}, t > 0.

Suppose E

t

6= ;. Then, for every y 2 E

t

, there exists a ball B(y , ⇢
y

)

such that
⌫(B(y , ⇢

y

5

))

!(B(y , ⇢
y

))

> t.

Thus E

t

⇢
S

y2E

t

B(y , ⇢
y

5

), and hence for any compact set F ⇢ E

t

there
exists a k 2 N such that

F ⇢
k

[

j=1

B

⇣

y

j

,
⇢

y

j

5

⌘

.
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Proof of the lower bound (B)

Applying Vitali’s covering lemma, we find disjoint balls
n

B

⇣

y

j

i

,
⇢

y

j

i

5

⌘o

m

i=1

such that

F ⇢
m

[

i=1

B

⇣

y

j

i

, ⇢
y

j

i

⌘

.

Consequently,

!(F ) 
m

X

i=1

!
⇣

B(y

j

i

, ⇢
y

j

i

)

⌘


1

t

m

X

i=1

⌫
⇣

B(y

j

i

,
⇢

y

j

i

5

)

⌘


1

t

⌫(Rn

).

Therefore, taking the supremum over all compact sets F ⇢ E

t

, we obtain
the weak-type (1, 1) maximal function inequality,

sup

t>0

t !(E

t

)

:

= kM!⌫k
L

1,1
(Rn,d!)

 k⌫k. (18)
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Proof of the lower bound (B)

Clearly, for any y 2 Rn such that M!⌫(y) < 1, we have

W⌫(y) =

Z 1

0

✓

⌫(B(y , s))

s

n�↵p

◆

1

p�1

ds

s

= 5

n�↵p

p�1

Z 1

0

✓

⌫(B(y , s

5

))

s

n�↵p

◆

1

p�1

ds

s

= 5

n�↵p

p�1

Z 1

0

✓

⌫(B(y , s

5

))

!(B(y , s))
·
!(B(y , s))

s

n�↵p

◆

1

p�1

ds

s

 5

n�↵p

p�1

(M!⌫(y))
1

p�1

W!(y)

 5

n�↵p

p�1

(M!⌫(y))
1

p�1

u(y) d�-a.e.

Note that if ⌫(B(y , s

5

)) > 0 but !(B(y , s)) = 0 for some s > 0 then
M!⌫(y) = 1. However, the set of such y has !-measure zero by (18),
as well as �

B

-measure zero, since inf

B

u � inf

B

[W!] > 0 for any B.
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Proof of the lower bound (B)

Hence, by the preceding estimate with c = 5

q(n�↵p)

p�1 , for any ball B,

kW⌫kq

L

q

(Rn,d�
B

)

 c

Z

B

(M!⌫)
q

p�1

u

q

d� = c

Z

B

(M!⌫)
q

p�1

d!.

To complete our estimates, we invoke the well-known inequality

kf k
L

r

(X ,!)

 c(r)!(X )

1�r

r kf k
L

1,1
(X ,!)

,

where 0 < r < 1, and ! 2 M+

(X ). Applying this inequality with
X = B, r =

q

p�1

and f = M!⌫, together with (18), we estimate

kW⌫kq

L

q

(Rn,d�
B

)

 C !(B)

1� q

p�1 kM!⌫k
q

p�1

L

1,1
(Rn,d!)

 C !(B)

1� q

p�1 k⌫k
q

p�1 ,

where C = C(↵, p, q, n).
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Proof of the lower bound (B)

To prove estimate (B), we observe that, for any supersolution u,

u(x) �W(u

q

d�) =

Z 1

0

"

R

B(x,s) u

q

d�

s

n�↵p

#

1

p�1

ds

s

By Lemma 5, for some C = C(↵, p, q, n),

Z

B(x,s)
u

q

d� � C [{(B(x, s))]
q(p�1)

p�1�q , 8x 2 Rn, s > 0.

Thus,

u(x) � C

Z 1

0

2

4

{(B(x, s))
q(p�1)

p�1�q

s

n�↵p

3

5

1

p�1

ds

s

= C K�(x).

This completes the proof of estimate (B), and hence Theorem 25.
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Corollary of Theorem 25

As a consequence of Theorem 25 and Lemma 3, we obtain the following
corollary.

Corollary

Under the assumptions of Theorem 25, there exist constants
C

i

= C

i

(↵, p, q, n) > 0 (i = 1, 2) so that

C

1

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

 u(x)

 C

2

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

, x 2 Rn,
(19)

for any solution u to (1). These estimates also hold d�-a.e.
Moreover, the lower estimate holds for any supersolution u such that
inequality (3) holds at x 2 Rn, whereas the upper estimate holds for any
subsolution u such that inequality (2) holds at x 2 Rn.
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Some useful estimates of constants {
Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).

Recall that we denote by { the least constant in the (1, q)-weighted norm
inequality

kW⌫k
L

q

(Rn,d�)

 { k⌫k
1

p�1 , 8⌫ 2 M+

(Rn

). (20)

We will also need a localized version of (20) for �
E

= �|
E

, where E is a
Borel subset of Rn, and {(E) is the least constant in the inequality

kW⌫k
L

q

(Rn,d�
E

)

 {(E) k⌫k
1

p�1 , 8⌫ 2 M+

(Rn

). (21)

In applications, we often use {(E) where E = B is a ball in Rn.

In the following lemma, we give lower and upper estimates of { in terms
of the norms of W� in Lorentz spaces L

s,q
(Rn, d�) equipped with

quasi-norm

kf k
L

s,q
(Rn,d�)

=

✓

s

Z 1

0

t

q

(�{x : |f (x)| � t})
q

s

◆

1

q

.
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Some useful estimates of constants {

Lemma 6

Suppose � 2 M+

(Rn

), 1 < p < 1, and 0 < ↵ < n

p

. Then

C

1

kW�k
L

q(p�1)

p�1�q

(Rn,d�)

 {  C

2

kW�k
L

q(p�1)

p�1�q

,q
(Rn,d�)

, (22)

where C

1

, C

2

are positive constants which depend only on p, q, ↵, n.

Proof of Lemma 6. Clearly it su�ces to consider the case � 6= 0. To
prove the lower estimate in (22), we may assume without loss of generality
that { < 1. Then by [Cao-V. 2017], Theorem 4.4, there exists a positive
solution u 2 L

q

(Rn, d�) to the equation u = W(u

q

d�). For
d⌫ = u

q

d�, we have W⌫ = u, and (20) yields

{ � kuk
p�1�q

p�1

L

q

(Rn,d�)

.
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Some useful estimates of constants {
On the other hand, by the lower estimate (A) above, there exists a
constant C = C(↵, p, q, n) such that

u(x) � C (W�(x))
p�1

p�1�q , x 2 Rn.

Combining the preceding estimates gives the lower estimate in (22).

To prove the upper estimate in (22), without loss of generality we may
assume that W� < 1 d�-a.e. Otherwise both sides of the upper
estimate are infinite due to the lower estimate in (22).
Let ⌫ 2 M+

(Rn

). By duality (Hölder’s inequality) for Lorentz spaces,

kW⌫kq

L

q

(Rn,d�)

=

Z

Rn

✓

W⌫

W�

◆

q

(W�)qd�

 c(q, p)

�

�

�

�

✓

W⌫

W�

◆

q

�

�

�

�

L

p�1

q

,1
(Rn,d�)

k(W�)qk
L

p�1

p�1�q

,1
(Rn,d�)

= c(q, p)

�

�

�

�

W⌫

W�

�

�

�

�

q

L

p�1,1
(Rn,d�)

kW�kq

L

q(p�1)

p�1�q

,q
(Rn,d�)

.
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Some useful estimates of constants {
For ⌫,� 2 M+

(Rn

), we use again the maximal function

M�⌫(y) = sup

⇢>0



⌫(B(y , ⇢
5

))

�(B(y , ⇢))

�

, y 2 Rn.

As was verified above (Proof of Lemma 5), for c = 5

n�↵p

p�1 ,

W⌫(y)

W�(y)
 c (M�⌫(y))

1

p�1 , y 2 Rn, (23)

and consequently by the weak (1, 1) maximal function inequality,

�

�

�

�

W⌫

W�

�

�

�

�

L

p�1,1
(Rn,d�)

 c

�

�

�

(M�⌫)
1

p�1

�

�

�

L

p�1,1
(Rn,d�)

= c kM�⌫k
1

p�1

L

1,1
(Rn,d�)

 c k⌫k
1

p�1 .
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Some useful estimates of constants {

Combining the preceding estimates, we obtain

kW⌫k
L

q

(Rn,d�)

 C kW�k
L

q(p�1)

p�1�q

,q
(Rn,d�)

k⌫k
1

p�1 ,

which completes the proof of the upper estimate in (22).

For 1 < p < n and 0 < ↵ < n

p

, the Riesz capacity of a measurable set
E ⇢ Rn is defined by

cap↵,p(E) = inf

n

kgkp

L

p

(Rn

)

: I↵g(x) � 1 on E , g 2 L

p

+

(Rn

)

o

.

We will often prefer to use the simplified notation cap(·) = cap↵,p(·).
In the case ↵ = 1, it is known that cap

1,p(F ) ⇡ cap
p

(F ) for all
compact sets F ⇢ Rn, where cap

p

(F ) is the p-capacity, and the
constants of equivalence depend only on p and n.
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Some useful estimates of constants {

Definition. Let � 2 M+

(Rn

). Then � is a Maz’ya measure if there
exists a constant m > 0 such that

�(F )  m cap(F ), for all compact sets F ⇢ Rn (24)

By the known properties of Riesz capacities, condition (24) actually holds
for all Borel sets E ⇢ Rn in place of F .

Lemma 7

Suppose 1 < p < n, 0 < ↵ < n

p

, 0 < q < p � 1, and � 2 M+

(Rn

).

(a) If � satisfies condition (24), then

[{(E)]

q(p�1)

p�1�q  C

3

�(E), for all Borel sets E ⇢ Rn, (25)

where C

3

= C

3

(↵, p, q,m, n).
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Proof of Lemma 7

Lemma 7 (continuation)

(b) If � satisfies condition (24), then

K�(x)  C

4

W�(x), x 2 Rn, (26)

where C

4

= C

1

p�1

3

.

Proof of Lemma 7. It is known [Cao-V. 2017], Lemma 2.1, that if (24)
holds, then for every s > 0,

Z

E

(W�
E

)

s

d�  C

5

�(E), for all Borel sets E ⇢ Rn, (27)

where C

5

= C

5

(↵, p, s,m, n). We will give a simpler proof [Verbitsky
2021] of (27) avoiding discrete Wol↵ potentials and random shifts of the
dyadic lattice used in [Cao-V. 2017].
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Proof of Lemma 7

We start with the well-known trace inequality for Riesz potentials
[Maz’ya 2011], there exists a constant C

6

= C

6

(↵, p, n) so that

kI↵f k
L

p

(Rn,d�)

 C

6

m

1

p kf k
L

p

(Rn,dx)

, 8f 2 L

p

(Rn, dx),

where 1 < p < 1, which is equivalent to condition (24).
We rewrite this inequality in the equivalent dual form,

kI↵(gd�)k
L

p

0
(Rn,dx)

 C

6

m

1

p kgk
L

p

0
(Rn,d�)

, 8g 2 L

p

0
(Rn, d�).

Let g � 0, and d! = gd�. By Wol↵’s inequality (see Lecture 5),

kI↵!kp

0

L

p

0
(Rn,dx)

� C

7

Z

Rn

W! d!,

where C

7

= C

7

(↵, p, n).
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Proof of Lemma 7

Hence, for some C

8

= C

8

(↵, p,m, n),

Z

Rn

W(gd�) g d�  C

8

kgkp

0

L

p

0
(Rn,d�)

, 8g 2 L

p

0
(Rn, d�). (28)

Letting g = �
E

in (28) gives

Z

Rn

W�
E

d�
E

 C

8

�(E). (29)

Also, letting g = �
E

(W�
E

)

r with r > 0 in (28) yields

Z

Rn

W[(W�
E

)

r

d�
E

] (W�
E

)

r

d�
E

 C

8

Z

Rn

(W�
E

)

rp

0
d�

E

.
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Proof of Lemma 7

Applying Lemma 4 to the measure �
E

, we obtain

W[(W�
E

)

r

d�
E

] � c
r

p�1

(W�
E

)

r

p�1

+1,

where c = c(↵, p, n). Combining this estimate with the preceding
inequality gives

Z

Rn

(W�
E

)

rp

0
+1

d�
E

 C

9

Z

Rn

(W�
E

)

rp

0
d�

E

,

where C

9

= C

9

(↵, p, r ,m, n). Letting r =

j

p

0 , for all j 2 N we deduce

Z

Rn

(W�
E

)

j+1

d�
E

 C

10

Z

Rn

(W�
E

)

j

d�
E

,

where C

10

= C

10

(↵, p,m, j , n).
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Proof of Lemma 7
By (29), the preceding inequality holds for j = 0. Hence by induction,

Z

Rn

(W�
E

)

j

d�
E

 C

11

�(E), j = 0, 1, . . . .

where C

11

= C

11

(↵, p,m, j , n). This proves (27) for s = j . The general
case j  s < j + 1 follows using Hölder’s inequality. This completes the
proof of (27) for all s > 0 with the constant C

5

= C

5

(↵, p,m, s, n).

We are now ready to complete the proof of Lemma 7. By Lemma 6, using
the upper estimate in (22) for �

E

in place of �, we obtain

{(E)  C

2

kW�
E

k
L

q(p�1)

p�1�q

,q
(Rn,d�

E

)

. (30)

We next invoke the known inequality for Lorentz spaces,

kf k
L

s

1

,q
(Rn,d�

E

)

 C(s

1

, s) [�(E)]

1

s

1

� 1

s kf k
L

s

(Rn,d�
E

)

,

if s > s

1

, for any q > 0.
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Proof of Lemma 7

Applying this estimate with s

1

=

q(p�1)

p�1�q

and any s > q(p�1)

p�1�q

gives

kW�
E

k
L

q(p�1)

p�1�q

,q
(Rn,d�

E

)

 C [�(E)]

p�1�q

q(p�1)

� 1

s kW�
E

k
L

s

(Rn,d�
E

)

.

Inequality (27) now yields

kW�
E

k
L

q(p�1)

p�1�q

,q
(Rn,d�

E

)

 C [�(E)]

p�1�q

q(p�1) .

Combining this estimate with (30) yields

{(E)  C [�(E)]

p�1�q

q(p�1) ,

where C = C(↵, p, q,m, n). This completes the proof of (25), that is,
statement (a).
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Proof of Lemma 7

To prove statement (b), it su�ces to apply statement (a) in the special
case E = B(x, r), which gives

[{(B(x, r))]
q(p�1)

p�1�q  C �(B(x, r)),

where C = C(↵, p, q,m, n). Hence, by the definition of the intrinsic
potential K, we immediately have

K�(x) =

Z 1

0

2

4

{(B(x, s))
q(p�1)

p�1�q

s

n�↵p

3

5

1

p�1

ds

s

 C

1

p�1

Z 1

0



�(B(x, s))

s

n�↵p

�

1

p�1

ds

s

= C

1

p�1

W�(x).

This completes the proof of statement (b), and hence Lemma 7.
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Remarks on Brezis–Kamin type estimates
Remarks. 1. Lemma 7 demonstrates that under assumption (24), the
intrinsic potential K� can be replaced with W� in the upper pointwise
estimate of any nontrivial subsolution u:

u(x)  C

h

(W�(x))
p�1

p�1�q

+ W�(x)
i

, x 2 Rn.

2. In the special case ↵ = 1, Lemma 7 shows that, for Maz’ya measures
such that

�(F )  m cap
p

(F ), for all compact sets F ⇢ Rn,

actually Theorem 21 (Brezis–Kamin type estimates) is an immediate
consequence of the general pointwise estimates of Theorem 22.
Moreover, for such measures a solution to the homogeneous problem

�divA(x,ru) = �u

q in Rn, lim inf

x!1
u(x) = 0,

in the case 0 < q < p � 1 exists if and only if W
1,p� 6⌘ 1.
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Non-homogeneous integral equations

We next deduce estimates for sub- and super-solutions to the equation

u = W(u

q

d�) + Wµ, u � 0 in Rn, (31)

in the case 0 < q < p � 1. We assume here that µ 6= 0. In particluar,
all solutions u to (31) are nontrivial: u � Wµ > 0, and u < 1 d�-a.e.

Theorem 26 (Verbitsky 2021)

Let 1 < p < 1, 0 < ↵ < n

p

, 0 < q < p � 1. Let �, µ 2 M+

(Rn

)

(µ 6= 0). Then there exist positive constants C

1

,C
2

which depend only
on p, q, ↵ and n such that any nonnegative solution u to (31) satisfies
the estimates

C

1

h

(W�(x))
p�1

p�1�q

+ K�(x) + Wµ(x)
i

 u(x)

 C

2

h

(W�(x))
p�1

p�1�q

+ K�(x) + Wµ(x)
i

, x 2 Rn.
(32)
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Non-homogeneous integral equations

Theorem 26 (continuation)

The upper estimate in (32) holds at every x where u(x) < 1, and
consequently d�-a.e.
Moreover, the lower estimate in (32) holds for every supersolution u at
every x 2 Rn, that is, if

W(u

q

d�)(x) + Wµ(x)  u(x) < 1 d�-a.e., (33)

whereas the upper estimate holds for every subsolution u, both d�-a.e.,
and at every x 2 Rn such that

u(x)  W(u

q

d�)(x) + Wµ(x) < 1. (34)

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 37 / 50



Non-homogeneous integral equations

Proof. Since µ 6= 0, we have

u(x) � Wµ(x) > 0, 8x 2 Rn.

Clearly, any supersolution of equation (31) is also a supersolution of the
homogeneous equation (1). Hence, by the Corollary of Theorem 25, there
exists a positive constant c = c(p, q,↵, n) such that

u(x) � c

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

, 8x 2 Rn.

These two lower estimates combined yield the lower bound in (32) with
C

1

= C

1

(p, q,↵, n) > 0.

To prove the upper bound, for any subsolution u to (31), we fix x 2 Rn

such that u(x)  W(u

q

d�)(x) + Wµ(x) < 1. Notice that if u is a
solution to (31), then this is equivalent to u(x) < 1.
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Non-homogeneous integral equations
Let d! = u

q

d� + dµ, c

1

= max(1, 2
p�2

p�1

) and c

2

= max(1, 2
1

2�p

). We
obviously have u(x)  c

1

W!(x) < 1 at x and d�-a.e. It follows,

W!(x) = W(u

q

d� + dµ)(x)

 c

2

W(u

q

d�)(x) + c

2

Wµ(x)

 c

q

1

c

2

W[(W!)

q

d�](x) + c

2

Wµ(x).

By Lemma 2 with ! in place of ⌫, we have for some C = C(↵, p, q, n),

W[(W!)

q

d�](x)  C (W!(x))

q

p�1

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

p�1�q

p�1

.

Combining the preceding estimates we deduce

W!(x)  c

q

1

c

2

C (W!(x))

q

p�1

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

p�1�q

p�1

+ c

2

Wµ(x).
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Non-homogeneous integral equations

Using Young’s inequality with exponents p�1

q

and p�1

p�1�q

in the first term
on the right-hand side, we estimate

W!(x) 
1

2

W!(x) + C

1

h

(W�(x))
p�1

p�1�q

+ K�(x)
i

+ c

2

Wµ(x),

where C

1

= C

1

(↵, p, q, n) is a positive constant.

Since W!(x) < 1, we can move the first term on the right to the
left-hand side, and obtain

u(x)  c

1

W!(x)  C

2

h

(W�(x))
p�1

p�1�q

+ K�(x) + Wµ(x)
i

,

where C

2

= C

2

(↵, p, q, n) is a positive constant. This completes the
proof of the upper estimate in (32) and Theorem 26.
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Bilateral pointwise estimates for quasi-linear equations

We now give a proof of bilateral pointwise estimates

u(x) ⇡ (W

1,p�(x))
p�1

p�1�q

+ K

1,p�(x) + W

1,pµ(x), (35)

for all nontrivial A-superharmonic solutions of the quasi-linear equation

� divA(x,ru) = �u

q

+ µ in Rn, lim inf

x!1
u(x) = 0, (36)

in the case 0 < q < p � 1, where µ,� 2 M+

(Rn

). The constants of
equivalence in (35) depend only on p, q, n.

Remark. A proof of the lower estimate for all such solutions, along with
the upper estimate in (35) in the case µ = 0 for the minimal solution was
provided in [Cao-Verbitsky 2017].
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Bilateral pointwise estimates

Theorem 27 (Verbitsky 2021)

Let 1 < p < n and 0 < q < p � 1. Let µ,� 2 M+

(Rn

). Then there
exists a nontrivial (super) solution u to (36) such that
lim inf |x|!+1 u(x) = 0 if and only if the following conditions hold:

Z 1

1

✓

µ(B(0, r))

r

n�p

◆

1

p�1

dr

r

+

Z 1

1

✓

�(B(0, r))

r

n�p

◆

1

p�1

dr

r

< 1, (37)

Z 1

1

({(B(0, r))
q(p�1)

p�1�q

r

n�p

dr

r

< 1. (38)

Under conditions (37), (38) any nontrivial A-superharmonic solution u

satisfies global estimates (35).
Moreover, the lower bound in (35) holds for every nontrivial supersolution
u, whereas the upper bound holds for every nontrivial subsolution u.
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Bilateral pointwise estimates
Proof. Let d! = u

q

d� + dµ. If u is a solution to (36), then by the
Kilpeläinen–Malý theorem on Rn,

C�1

W

1,p!(x)  u(x)  CW

1,p!(x), (39)

where C = C(n, p) is a positive constant.
It is easy to see that the lower bound in (39) holds for A-superharmonic
u � 0 which are supersolutions, and the upper bound for subsolutions to

� divA(x,ru) = ! in Rn, lim inf

x!1
u(x) = 0, (40)

Hence, for a nontrivial supersolution u to (36), we have

u � C�1

W

1,p! � W

1,p(u
q

d �̃) + W

1,pµ̃,

with µ̃ = c

1

µ and �̃ = c

2

�, if c

i

= c

i

(p, q, n) are small enough.
Thus, the lower estimate (35) of Theorem 27 for supersolutions u follows
from the lower estimate (32) of Theorem 26 in the special case ↵ = 1.
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Bilateral pointwise estimates

Moreover, if a nontrivial (super) solution u to equation (36) exists, then
by the just proved lower estimate (35) of Theorem 27 it follows that both
W

1,pµ 6⌘ 1 and W

1,p� 6⌘ 1, and also K

1,p� 6⌘ 1, which are
equivalent to conditions (37) and (38) respectively.

Similarly, if u is a nontrivial subsolution to (36), then we need to pick the
constants c

i

= c

i

(p, q,C), i = 1, 2, large enough, so that, for scaled
µ̃ = c

1

µ and �̃ = c

2

�, we have

u  W

1,p(u
q

d �̃) + W

1,pµ̃,

applying (39) for d! = u

q

d� + dµ again. Then the upper estimate in
(35) is deduced from the upper estimate in (32).

It remains to demonstrate that, subject to conditions (37), (38), there
exists a nontrivial solution u to (36). We sketch a proof next.
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Bilateral pointwise estimates

In the homogeneous case µ = 0 (� 6= 0), a positive A-superharmonic
solution u 2 L

q

loc

(Rn,�) was constructed in [Cao-V. 2017], Theorem 1.1,
by iterations using a sequence u

j

of A-superharmonic functions so that

� divA(x,ru

j+1

) = �u

q

j

in Rn, j = 1, 2, . . . , (41)

and
u

j

(x)  C v(x), x 2 Rn,

where C = C(p, q, n) and v is a nontrivial solution to the integral
equation

v = W

1,p(v
q

d�) in Rn.

Then lim inf

x!1 v(x) = 0, and by the Corollary of Theorem 25,

v(x) ⇡ (W

1,p�(x))
p�1

p�1�q

+ K

1,p�(x) in Rn.
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Bilateral pointwise estimates
It is important to choose the initial iteration u

1

properly, as an
A-superharmonic solution to the equation

� divA(x,ru

1

) = ! in Rn, lim inf

x!1
u

1

(x) = 0, (42)

where, for some positive constants c

0

= c

0

(p, q, n), C = C(p, q, n),

d! = c

0

v

q

0

d�, v

0

= (W

1,p�(x))
p�1

p�1�q  C v .

Notice that d!  c

0

C

q

v

q

d�. Hence, for some constants
C

i

= C

i

(p, q, n) > 0,

u

1

(x)  C

1

W

1,p!(x)  c

1

p�1

0

C

2

W

1,p(v
q

d�)

= c

1

p�1

0

C

2

v(x)  v(x),

provided c

1

p�1

0

C

2

 1. By induction, we verify that, for small c
0

,

u

j

(x)  u

j+1

(x)  v(x), x 2 Rn, j = 1, 2, . . . .

See details in [Cao-V. 2017], proof of Theorem 1.1.
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Bilateral pointwise estimates

Since u

j

" u  v , it is not di�cult to see using a Harnack type theorem
that u = lim

j!1 is a nontrivial A-superharmonic function, and

�divA(x,ru

j+1

) �! �divA(x,ru)

in the sense of measures [Trudinger-Wang 2002].
Passing to the limit in (41), we conclude that u is a nontrivial solution,

u(x)  v(x)  C

h

(W

1,p�(x))
p�1

p�1�q

+ K

1,p�(x)
i

, x 2 Rn.

In the case µ 6= 0, a similar iteration argument can be used with u

1

= 0.
Using [Phuc-V. 2009], Lemma 3.7 and Lemma 3.9, we can construct a
nondecreasing sequence u

j

" u of A-superharmonic functions so that

� divA(x,ru

j+1

) = �u

q

j

+ µ in Rn, j = 1, 2, . . . . (43)
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Bilateral pointwise estimates

This part of the construction actually works for any q > 0 and p > 1

(see the proof of Theorem 3.10 in [Phuc-V. 2009] for q > p � 1).
However, for 0 < q < p � 1 we control the growth of u

j

di↵erently. By

the Kilpeläinen–Malý theorem on Rn (39), we have

u

j+1

 CW

1,p(�u

q

j

+ µ)

 C max(1, 2
2�p

p�1

)

h

W

1,p(�u

q

j+1

) + W

1,pµ
i

.
(44)

After scaling by letting µ̃ = c

p�1µ and �̃ = c

p�1�, where the constant

c = Cmax(1, 2
2�p

p�1

), we see that u

j+1

is a subsolution for the
corresponding integral equation (31), i.e.,

u

j+1

 W

1,p(�̃u

q

j+1

) + W

1,pµ̃, j = 0, 1, 2, . . . . (45)
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Bilateral pointwise estimates

It follows by induction using Lemma 3 and the Corollary to Theorem 25
(with µ̃ and �̃) that the right-hand side of (45) is finite d�-a.e. See
details in [Verbitsky 2021].

For subsolutions u

j+1

, we have the upper bound

u

j+1

(x)  C

h

(W

1,p�(x))
p�1

p�1�q

+ K

1,p�(x) + W

1,pµ(x)
i

, x 2 Rn,

with C = C(p, q, n), where we switched back from µ̃, �̃ to µ, �.

Passing again to the limit in (43), we deduce that u = lim

j!1 u

j

is a
nontrivial A-superharmonic solution to (36), which satisfies the estimate

u(x)  C

h

(W

1,p�(x))
p�1

p�1�q

+ K

1,p�(x) + W

1,pµ(x)
i

(46)

d�-a.e., and at every x 2 Rn where the right-hand side is finite.
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Bilateral pointwise estimates
Remarks. 1. One of the technical di�culties in the construction of an
A-superharmonic solution to the equation

�divA(x,ru) = � u

q

+ µ,

in the non-homogeneous case (µ 6= 0), is that µ 2 M+

(Rn

) may be
singular with respect to the p-capacity.

For such measures in general, the uniqueness problem and standard
comparison principles for A superharmonic solutions to the equation

�divA(x,ru) = µ

are open in general. The iteration scheme described in [Phuc-Verbitsky
2008/09] relies instead on a restricted version of the comparison principle
for a specifically constructed sequence of local renormalized solutions.

2. For solutions to the homogeneous equation (µ = 0), � 2 M+

(Rn

) is
indeed absolutely continuous with respect to the p-capacity, which
simplifies the construction of iterations.
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