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The Laplace-Beltrami operator
Recall that the gradient operator V is defined by
. n e
(Vu)' = Zg"@xju.
j=1

The divergence operator div on vector fields F' is defined by

By (\/@ F") .

1 n
divF =
v Vvdetg ;

The Laplace-Beltrami operator Lg is represented in the form

Lo =divo V.
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The weighted Laplace operator

Let (M, m) be a weighted manifold with dm = w dmy.
The weighted divergence operator is defined by

1
div, = — odiv o w.
w
Recall that V and div are the Riemannian gradient and divergence,

respectively, and do not depend on the weight w.

The (weighted) Laplace operator £ = A is defined by A = div,, o V.
From the definitions of V and div, it follows that

i Ox; (w detggij(‘?xju) s (1)

1
Au = —div (wVu) =
“ J=1

1
w+/det g ’,

acting on C? functions u on M.
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Example (elliptic differential operators in R")

In an open set 2 C R" consider the operator

Lu = b (x) Z Ox; (ajj (x) Oxu) , (2)
i,j=1
where b, A = (ajj) are smooth functions, and b > 0.

We assume here that the matrix A(x) is symmetric and positive definite
for any x € €.

In other words, the operator L is elliptic (the uniform ellipticity is not
needed).
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Example (elliptic differential operators in R")

(continuation)

We claim that L coincides with the weighted Laplace operator A on
Q C R"” with the Riemannian metric g and weight w chosen so that

(87) = bla), w=biTVaetd &

Clearly,
1

b"det A
The measure dm = w dmyg associated with A is given by

det g = det (g;;) = (4)

1 1
dm = w+/det g dx = b2~ 1v/det A dx = — dx, 5
v b" det A b (5)

where dx is Lebesgue measure.
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Example (elliptic differential operators in R")

(continuation)

Recall that by (1), we have

Au = w+/det g gijaxj u) : (6)

1
w+/det g JZ:I Ox; (

Substituting (3), (4) into (6) yields

b"d tA 1 .
Au = Vb7 de Z ax,( ~1Vdet A ba'fax.u>
b2~ 1\/det A V' b"det A !

b Z Ox; (ajj (x) Oxu) = L

ij=1

Therefore, the results below for a general weighted manifold (M, m), are
applicable to the operator L in £ C R" with the measure m. In
particular, if b = 1, then L = div(AV-) and m is Lebesgue measure.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 8 / 47



The Doob transform

Given a positive C? function h in Q C M, consider the following operator,

Lh—lvoh
"~ h

acting on C? (R2). The operator L is called the Doob transform of A.
Usually it is used for harmonic functions h, but we use L for
superharmonic h as well [Grigor'yan-Verbitsky 2019].

Notice that L" can be written in the form

Ah
LhV = AhV -+ TV, (7)

where v € C? () and A" is the h-Laplacian defined by
h 1 - 2
A'v = ﬁdlvw(h Vv). (8)

Note that A" is the Laplace operator for the measure h*dm = h*wdmy.
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Green functions

Recall that, for a general weight w, the Laplace operator £L = A is
symmetric with respect to the measure m. Moreover, A satisfies the
Chain Rule and the Product Rule, like in the case w = 1, when A = L
is the Laplace-Beltrami operator.

For any open connected set Q C M, we denote by G* (x, y) the infimum
of all positive fundamental solutions of A in €.

Then the following is true:
either G2 (x,y) = 400 or G (x,y) < 400 for all x # y.

In the latter case we will say that G is non-trivial, and call G the
minimal Green function (positive, symmetric) of A in €2.

The existence of a non-trivial G** is the only assumption on € that we
Impose.
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Green potentials

If G is the non-trivial minimal Green function, then for any
pn € MH(Q), the Green potential G4 is defined by

G2 (x) = / G2 (x,y) du (y) -
Q

For a nonnegative f € L (R, m), we set G*f := G**(f dm).

loc

For a signed function f € LI (R, m),

loc
GUf (x) = G, (x) — G¥f_ (x)

assuming at least one of the following:

G2f, (x) < 400, or GPf_(x) < +oo.
Then Gf (x) is said to be well-defined.

Remark. If Q is relatively compact then G is non-trivial,
G (x,-) € L' (), and G*f is finite for any F € L>° (Q).
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Local case: semi-linear inequalities

(with boundary conditions)

Our main goal is to obtain “sharp” pointwise estimates of positive
sub/super-solutions to the following model semi-linear problem.

Problem. Let 2 C M be an open relatively compact connected
subdomain of M. Given V € C(Q), p € C (Q), v € C(89Q),

w, v > 0, assume that there exists a nonnegative solution u to the
following semi-linear Dirichlet problem:

—Au+ Vuil > pu in Q
{ (9)

u> v in OS2,
if g > 0, and
[arvese th e
if g <O0.

Remark. Here u € C?*(R) N C (RQ) is a classical solution.
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The auxiliary linear Dirichlet problem

Remark. Analogues for general domains  C M (not necessarily
relatively compact) and non-smooth coefficients/data are discussed

below.

We will compare u to the solution h of the following auxiliary linear
Dirichlet problem:

—Ah = pu in €,

h=v in 0%,

where h > 0 is superharmonic in Q (u,v > 0), for regular domains €2.

We will write
h =P% + GQ;L.

For smooth domains P*v and Gy are given by the Poisson and Green
integrals respectively.
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Main results: local case

Theorem 3 (Grigor'yan-Verbitsky 2019)

Let (M, m) be a weighted manifold, & C M an open relatively compact
subdomain of M, 8K regular, V € C(R), p € C (Q), v € C(09Q),

p, v >0, p locally Holder continuous, either i 2 0 or v £ 0, which
ensures that h > 0 in 2.

Suppose u € C*(R) N C (RQ) is a non-negative super-solution to (9) if
q > 0, or sub-solution to (10) if ¢ < 0.

Then the following statements hold for all x € .

(i) If g =1, then

u(x) > h(x)e 7 & (VI (11)
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Main results: local case (continuation)

Theorem 3 (statements (ii), (iii))
(ii) If @ > 1, then necessarily the condition

(g — 1) G2(hTV)(x) < h(x) (12)
holds in 2, and
A
u(x) > h(x) [1+ (g - 1S ‘:Zx‘;)( ) (13)

(iii) If 0 < q < 1, then

_1
1—q

G (xa+hV)(x)
h(x)

u(x) = h(x) {1 —(1—q) , (14)

+

where Qt = {x € Q: u(x) > 0}.
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Main results: local case

(continuation)

Theorem 3 (statement (iv))
(iv) If g < 0 and u > 0 in 2 then necessarily the condition

(1 — q) G*(h7V)(x) < h(x), (15)

holds in 2, and

1

G2(h7V)(x) |
h(x) ’

u(x) < h(x) |1 — (1 - q) (16)

provided G*(h9V)(x) is well-defined.
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Inequalities for Lfv; v = ¢! (%) ¢ increasing
Lemma (inequalities for the Doob transform)

Let h be a positive C?-function in Q. Let u be a solution of
—Au+ Vu? > —Ah (17)

in Q, where V € C () and q € R\ {0}. Let ¢ be a C? function on an
interval I C R such that ¢" > 0 in I. Assume 7 (2) C ¢ (/).

Then v = ¢~ () satisfies the differential inequality:

I () L2 1) Rk SR 4 (2 T
vV GES 2 01 (S0 - ) + Gy Vv 69

If in place of (17) we have

—Au + Vu? < —Ah, (19)

then (18) holds with < instead of >.
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Proof of the lemma

Recall that LP = % o A o h. In particular, Lh1 = AT”.

Set i = %, so that L"ii = %Au. Divide both sides of (17) by h:
—Lhg + vt > —1h. (20)
By the Chain Rule, for any v € C? ()
Alp(v) = ¢'(v)A"v + ¢"(v)| V|
By (7) applied to ii = ¢(v), we have L"ii = AMii + AT" ii. Hence,

Lhg(v) = Bho(v) + 2 6(v)
= $ (A" + ¢ (V)T + (V)
h
= F WA + 500+ IV + 5 (6() — v/ ()

= S + " ()T + 57 (60) — v (V).
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End of the proof

Therefore, solving for L"v, we have

o () 9M0) oo A 6(v)
Pv=w) Tew Y T <¢'(v) )

Since i = ¢(v), it follows that (20) yields the following estimate:

(21)

—Lho(v) + h97V (V)T > — LM,
Substituting this inequality into (21), we get rid of L"¢(v):

BTy () =1\ @)
Sv) ~ 1( & (v) )*

This proves the desired inequality for Lv.

_Lhy 4+ -1y

V|2

The converse inequality with < in place > is proved in the same way. [
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Inequalities for A (hv); v = ¢~ (%)

@ increasing, convex

Corollary (superharmonic h)

Under the hypotheses of the Lemma, assume in addition Ah < 0 in €2
and 0 € I.
(i) If ¢ is convex in the interval I, so that

¢(0) =1, ¢, > 0, qu > 0, (22)

and u satisfies —Au + Vu9 > —Ah, then the function v = ¢~ (%)
satisfies the following inequality in €2:

P(v)“

_ » q
A (hv) + V0 >

> 0. (23)
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Inequalities for A (hv); v = ¢~ (%)

¢ increasing, concave

Corollary (superharmonic h)

(ii) If @ is concave in the interval I, so that
»(0) =1, ¢, > 0, ¢” <0, (24)

and u satisfies —Au + Vu9 < —Ah, then v satisfies

ov)7 (25)

—_ v q
A (h) + VT <
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Proof of the corollary

To prove (i), notice that, for a convex ¢ such that ¢’ > 0, ¢(0) =1,

v) —1
o1
¢’ (v)
since the chord of the graph of the convex function ¢ between the points

(0,1) and (v, ¢ (v)) lies above the tangent line at (v, ¢ (v)).
Using also that LP1 = ATh < 0, we obtain from the Lemma:

o(v)?
¢’ (v) =0

which is equivalent to (23), since A(hv) = hL"v.
The proof of statement (ii) is similar. []

—L"v 4 h 1y
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A comparison principle for superharmonic functions

The following two lemmas enable us to get rid of some technical
assumptions like infg h > 0 initially used in the proofs below.

Lemma (a comparison principle)

Suppose Q C M s open, and F is a superharmonic function in 2.
Suppose F = F1 + F> where liminfy_,, F1(x) > 0 for every z € 0512,
and F» > —P, where P = G* is a Green potential of a positive
measure p in 2, P % 400 on every component of 2. Then F > 0 in Q./

Proof.

The function F + P is obviously superharmonic, and F + P > F;. Hence
liminfx_,,(F + P)(x) > 0 for z € 05.€2, and by the maximum principle
F+ P > 0on £2. Hence F is a superharmonic majorant of —P, whose

least superharmonic majorant must be zero, which yields F > 0. []

o

Remark. The case P = 0 gives the usual form of the maximum principle.
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A version of the maximum principle

The following version of the maximum principle will be frequently used
below. It is deduced from the previous comparison lemma.

Lemma (a maximum principle)

Let 2 be an open subset of M with non-trivial Greeen'’s function, and let
v € C? () satisfy

—Av > f in S,
liminfy_,5_ov(x) >0,

where f € C () such that G®*f is well defined in Q. Then

v(x) > G¥ (x), VxeQ. (26)
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Semi-linear problems in “nice” domains

under the assumption info h > 0

Lemma (proof of Theorem 3: infg h > 0, smooth boundary)

Suppose S is a relatively compact domain in M with smooth boundary.
Suppose u € C*(R) N C (R), V € C (Q), and p, v are non-negative
functions such that v € C(8R), and p € C () N C*(K) for some
a € (0,1]. Let

h = P + Gy, (27)

Ifinfg h > 0, then the following statements hold.
(i) In the case ¢ > 0, if u > 0 is a solution of

{—Au + Vu > p in €2, (28)

u> v in 012,

then statements (i)-(iii) of Theorem 3 are valid (lower bounds for u).

y
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Semi-linear problems in “nice” domains

under the assumption info h > 0

Lemma (continuation)
(ii) In the case q < 0, if u > 0 is a solution of

—Au+ Vui1 < p in €,
u<v in 012,

then statement (iv) of Theorem 3 is valid (upper bounds for u).

(29)

Remarks. 1. The technical assumption infg h > 0 is removed using the

maximum principle lemma stated above.

2. The restriction that €2 has a smooth boundary is unnecessary, and will

be removed below.
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Proof of the Lemma

By the hypotheses, h € C?(2), —Ah = p, and h > 0 in Q. Choose the
function ¢ in the Corollary to satisfy the equation

¢'(v) = o(v)7. (30)
For g = 1, this gives
o(v) = e, v eR, (31)
while for g # 1, we obtain
s(v) = [(1— qv+ 177, vel, (32)

where the domain I of ¢ is given by:

(g <) fa<,
\ (—oo, 1) if g > 1.
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Proof of the Lemma

(continuation)

Note that in all cases ¢ (I5) = (0, o©). Also, we have

$(v) =[(1—q)v+1]75, ¢"(v)=ql(l—q)v+1]17. (34)

Since u = h¢ (v), all the estimates in the case g > 0 follow from:

v(x) > —h(lx)GQ(h" V)(x) forall x € Q. (35)

For g < 0, we will have the opposite inequality.
Let us use the function hv expressed explicitly via u and h as follows:

k(1= (5)1) 1< q< oo,
hv = < hlog(¥ if g =1, (36)
h
| =5 (h9u'~9 — h) if —oco<q<1.
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Proof of the Lemma

(continuation)

Sinceu > 0, h > 0in Q, we have () C ¢(lq) = (0,00), and

hv € C?*(Q).

In the case ¢ > 0 the function ¢ is concave, increasing, and ¢(0) = 1.
We obtain from the Corollary,

—A (hv) + h7V > 0. (37)

Since u > v > 0 on 992, and consequently infq u > 0, we actually have
hv € C (ﬁ) N CZ(Q), and hv > 0 on 992, which by the maximum
principle implies (35).

In addition, if ¢ > 1, then I = (—o0, ﬁ) so that v(x) < ﬁ.
Combining this estimate with (35) gives the necessary condition for the
existence of w:

1
—GR(hTV)(x) < —lh(x), for all x € Q.
q —_—
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Proof of the Lemma

(continuation)

Similarly, in the case g < 0, we have hv € C (ﬁ) N CZ(Q) since
infog h > 0. The inequality u < v on 912 yields the boundary condition
hv < 0 on 9€2. By the Corollary we obtain that in €2,

— A (hv) + h7Vv < 0, for all x € Q. (38)

Together with the boundary condition this yields by the maximum principle

v(x) < —h(lx)GQ(hq V)(x), forall x € Q. (39)

In view of (36), this translates into the desired inequality (16) for u.
Moreover, since I = ( — ﬁ, +oo), in this case v(x) > —ﬁ.
Combining this estimate with (39) yields the necessary condition (15) for

the existence of u, namely (1 — q)G®(h9V)(x) < h(x), Vx € Q. ]
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Proof of Theorem 3

Suppose 2 C M is a relatively compact domain whose boundary is regular
with respect to the Dirichlet problem. Let

h=P%% +G%% >0 in Q. (40)
Since p is uniformly bounded in €2, we have

Gu < (sup ) G"1,

and hence by the regularity of 012,

. Q N T Q - . Q -
Jim Gu(y) = lim GT1(y) =0, lim PPv(y) = v(x), x € 9.

It follows h € C*(RQ) N C (), —Ah = p, and

Jim h(y) = lim u(y) =v(x), x¢& 9%
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Proof of Theorem 3(continuation)

Fore > 0, set u. = u+ €, h. = h + €, and define the function v, via

Ue

h_e =¢(Ve)7

where ¢ is chosen as in the proof of the previous Lemma. Note that
h. > 0 is superharmonic in 2, and —Ah, = p. Clearly,

he,uc,ve € C>(Q)NC (ﬁ)

Identity (21) applied to he, uc, ve in place of h, u, v gives

Ay = B @) ov) _
A(heve) = & (ve) + ¢,(Ve)|V |“he + Ah (¢’(Ve) e),

where
ue

) = o) = ()
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Proof of Theorem 3 (continuation)
Suppose g > 0 and —Au > —Vu9 + p, up = —Ah. Hence,

¢”( Ve) Pd(ve) — 1 . ) .
@' (ve) @' (ve) )

Drop the last two non-negative terms on the right:

—A(heve) > —h9 ( ) |Vv|2h€+Ah<
Ue

q
—A(h, v€)+h"<u) vV > 0.
Ue

q
hv€+GQ(hq<") v)
Ue

is superharmonic in €2, and has non-negative boundary values:

= w+997 (4T5) 2w+ ) =0 on o,
vV + €

Hence, the function

since u > v on 02, ¢ is increasing, and ¢(0) = 1.
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Proof of Theorem 3 (continuation)
Consequently, by the maximum principle lemma,

q
hev, > —G*® (hg (i) v) n Q. (41)
Ue
Since u < ug, this implies
heve > —G™ (h3V,), (42)
where, in the case g > 1 we additionally have
q
G2 (havy) _ G* (e (i) V) 1
. € < — € < e < —. (43)
h, h, q—1

Let us show that in the case ¢ > 1 actually u > 0 in €. In terms of u,
estimate (42) gives, for g > 1,

ue > he(x)o (— G? (b V+)> . (44)

he
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Proof of Theorem 3 (continuation)

Clearly, he | h, where h > 0 by (40). Passing to the limit as € — 0, we

deduce by the dominated convergence theorem, for g > 1,

Q
u> ho (-G (hqv+)> >0 inQ.

h

Note that here, for g > 1, we have a strict inequality

G2 (hV,) (x) 1
T hx) S g-1

since otherwise u(x) = +oo0.
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Proof of Theorem 3 (continuation)

Hence, in the case g > 1, we have u > 0 in £2. Consequently ule T 1 as
e J 0, and by the dominated convergence theorem,

lim G (hg (#)q v) = G2 (hIV). (45)

The main estimate restated in terms of u.:

Q (pa (u\?
we > he(x)o( - G? (h 5) V)) (46)

where by (43) the right-hand side is well-defined. Passing to the limit as
e | 0, we deduce, forq > 1,

G (hiV)
u > hqb( — h )
For g > 1, additionally,
G (h9V) 1
— < _—
h q—1
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Proof of Theorem 3 (continuation)

A similar argument applies for 0 < g < 1, but in this case u can be equal
to zero on an open set, so that ui T xo+ as € | 0. Passing to the limit in
(41) using the dominated convergence theorem as above gives

hv > —G" (xq+hV),

which is equivalent to the desired lower estimate for u.
In the case g < 0, we define the function v in a slightly different way, via

the equation
u

h_e — ¢(V€)7

where as before h = h + €, so that —Ah, = u, and

1 _
he ve = ——— h? (u'~9 — h179) € C*(Q) N C(Q). (47)
—q
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Proof of Theorem 3 (continuation)

Then
—A(heve) + K1V < 0.

Since u < v on 092, it follows

(v+e)d (w9 (w+e!79) <0 ondQ.

h.v, =
1—gq

Hence,
hove < —G®(h7V) in Q, (48)
or, equivalently,

1

G®(hav) |17

u<h|1—(1-q) in Q. (49)

he
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Proof of Theorem 3 (continuation)
From the above estimates we deduce

G%(hav) 1
— = > Ve > —— 50
h, = 1—gq’ (50)
so that the expression in square brackets in is always positive. Moreover,
G%(hiv G9(hiv_ 1
h, h l1—gqg

Since g < 0, we have h7 1 h9 as € | 0. Using dominated convergence,

G%(h9V)(x) 1
- ho) > - (52)

Notice that here G®(h9V.,.)(x) < 400; otherwise
G?(h7V1)(x) = +oo,

which contradicts the assumption that G2(h9V)(x) is well-defined.
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Proof of Theorem 3 (continuation)

Clearly, (49) yields the following inequality at x:

1
Ge(hIv GR(hIv_) |1
(h¢ +)+(1_q) ( )

u< h,
- h, h

(53)

1-(1-q)

By the dominated convergence theorem, we obtain the corresponding
upper estimate at x:

_1
1—q

G#(h7V)(x)
h(x)

u(x) < h(x) |1 - (1 - q)

Since by assumption u(x) > 0, the expression in square brackets must be
strictly positive (the desired necessary condition). []
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Extensions of Theorem 3

We continue our discussion of pointwise estimates of solutions in the local
case for arbitrary domains £ C M (not necessarily relatively compact).
Denote by OocM the infinity point of the one-point compactification of
M. For any open subset 2 C M denote by O-c€2 the union of 9€2 and
Joo M, if Q is not relatively compact (infinite boundary of 2). We set
Oocf2 = 0N if Q is relatively compact.

Definition
For a function u defined in 2 C M, we write

LG (y) =0, (54)

if limg_,o0 u(yk) = 0 for any sequence {yx} in € that converges to a
point of 0c82; the latter means, that either {yx} converges to a point on

OS2 or diverges to OocM. In the same way we understand similar
equalities and inequalities involving lim sup and liminf .

v
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| ocal case

For example, if Q is relatively compact, then (54) means that

limg_, oo U (yx) = 0 for any sequence {yx} converging to a point on 912.
If Q = M then Q = 0 and (54) means that limyg_, oo u (yx) = 0 for
any sequence yx — OooM, that is, for any sequence {yx} that leaves any
compact subset of M.

In particular, for M = R", (54) is equivalent to u(y) — 0 as |y| — oo.

We will use the notation

_ [ 1, u(x)>0,
X"(x)_{O, u(x) <0.
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Main results: local case

Theorem 4 (Grigor'yan-Verbitsky 2019)

Let (M, m) be an arbitrary weighted manifold. Let Q2 C M be a
connected open subset of M with a finite Green function G*. Suppose
V,f € C(Q), where f >0, f Z0 in Q. Let u € C*(R) satisfy

inthecaseq >0: — Au+ Vu?>Ff inQ, u>0, (55)
or

inthecaseq < 0: —Au+ VWVu?!<f inQ, u>0. (56)
Set h = G**f and assume that h < oo in Q. Assume also that

G2(h9V)(x) (respectively G(xuh9V)(x) in the case 0 < q < 1) is
well-defined for all x € Q2.
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Main results: local case

(continuation)

Theorem 4 (statements (i)-(ii))
Then the following statements hold for all x € SQ.
(i) If g =1, then
u(x) > h(x)e TS V) (57)
(if) If @ > 1, then necessarily
—(q — 1) G*(h7V)(x) < h(x), (58)
and the following estimate holds:
h
u(x) > al - (59)
1y G2(hIV)(x)] 7T
1+ (a— 1) S| J
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Main results: local case

(continuation)

Theorem 4 (statements (iii)-(iv))
(iii) If0 < q < 1, then

1
G2 (xuh?V)(x) | =
h(x)

u(x) > h(x) {1 —(1—-q) (60)

_|_

(iv) If @ < 0 and limy_,5__q u(y) = 0, then necessarily (58) holds, and

1
1—q

G#(h7V)(x)
h(x)

(61)

u(x) < h(x) [1 —(1—q)

v

Remarks. 1. Condition f # 0 implies h = Gf > 0 in Q.
2. No boundary conditions are imposed in the case g > 0.
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Remarks

(continuation)

Remarks. 3. In the case ¢ > 1, it follows from (57) and (59) that the

condition
G2 (h9 V) (x) < 400

implies u(x) > 0. Moreover, if for some 0 < C < ﬁ and all x € Q,
G2 (V) (x) < Ch(x),

then u > c h in Q with some constant ¢ = ¢ (C, q) > 0.

4. In the case 0 < g < 1, the function u can vanish in €, but the
estimate of u does not depend on the values of V on the set {u = 0}.
This explains the appearance of the factor x, and the subscript 4+ on the

right-hand side of (60).

5. In the case g < 0, the boundary condition limy_,5_ou(y) =0 s
essential; without it u does not admit any upper bound.
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Main results: local case

(continuation)

The proof of Theorem 4 reduces to Theorem 3 above that deals with
relatively compact sets  C M, using an exhaustion of Q = | Jp-; Q2 by
means of increasing relatively compact sets €2, with smooth boundary, and
approximation of f. We omit the details (see [Grigor'yan-Verbitsky 2019],
Proof of Theorem 3.1).

In the next theorem we give estimates of solutions u of semi-linear
inequalities (55)-(56) with f = 0. (Theorem 4 requires that f £ 0.) Such
results are applicable to the so-called gauge function for Schrodinger
equations (g = 1), large solutions for super-linear equations (g > 1), or
ground state solutions (—oo < @ < 1) to the corresponding equations
and inequalities in unbounded domains in R" or on noncompact manifolds.
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