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The Laplace-Beltrami operator

Recall that the gradient operator r is defined by

(ru)

i

=

nX

j=1

g

ij@
x

j

u.

The divergence operator div on vector fields F

i is defined by

divF =

1

p
det g

nX

i=1

@
x

i

⇣p
det g F

i

⌘
.

The Laplace-Beltrami operator L
0

is represented in the form

L
0

= div � r.
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The weighted Laplace operator

Let (M,m) be a weighted manifold with dm = ! dm

0

.

The weighted divergence operator is defined by

div! =

1

!
� div � !.

Recall that r and div are the Riemannian gradient and divergence,
respectively, and do not depend on the weight !.

The (weighted) Laplace operator L = � is defined by � = div! � r.
From the definitions of r and div, it follows that

�u =

1

!
div (!ru) =

1

!
p
det g

nX

i ,j=1

@
x

i

⇣
!
p

det g g

ij@
x

j

u

⌘
, (1)

acting on C

2 functions u on M .
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Example (elliptic di↵erential operators in Rn

)

In an open set ⌦ ✓ Rn consider the operator

Lu = b (x)

nX

i ,j=1

@
x

i

�
a

ij

(x) @
x

j

u

�
, (2)

where b, A = (a

ij

) are smooth functions, and b > 0.

We assume here that the matrix A(x) is symmetric and positive definite
for any x 2 ⌦.

In other words, the operator L is elliptic (the uniform ellipticity is not
needed).
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Example (elliptic di↵erential operators in Rn

)

(continuation)

We claim that L coincides with the weighted Laplace operator � on
⌦ ✓ Rn with the Riemannian metric g and weight ! chosen so that

⇣
g

ij

⌘
= b

�
a

ij

�
, ! = b

n

2

�1

p
detA. (3)

Clearly,

det g = det

�
g

ij

�
=

1

b

n

detA

. (4)

The measure dm = ! dm

0

associated with � is given by

dm = !
p
det g dx = b

n

2

�1

p
detA

1

p
b

n

detA

dx =

1

b

dx, (5)

where dx is Lebesgue measure.
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Example (elliptic di↵erential operators in Rn

)

(continuation)

Recall that by (1), we have

�u =

1

!
p
det g

nX

i ,j=1

@
x

i

⇣
!
p
det g g

ij@
x

j

u

⌘
. (6)

Substituting (3), (4) into (6) yields

�u =

p
b

n

detA

b

n

2

�1

p
detA

nX

i ,j=1

@
x

i

✓
b

n

2

�1

p
detA

1

p
b

n

detA

ba

ij@
x

j

u

◆

= b

nX

i ,j=1

@
x

i

�
a

ij

(x) @
x

j

u

�
= Lu.

Therefore, the results below for a general weighted manifold (M,m), are
applicable to the operator L in ⌦ ⇢ Rn with the measure m. In
particular, if b ⌘ 1, then L = div(Ar·) and m is Lebesgue measure.
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The Doob transform

Given a positive C

2 function h in ⌦ ✓ M , consider the following operator,

L

h

=

1

h

� � � h

acting on C

2

(⌦). The operator L

h is called the Doob transform of �.
Usually it is used for harmonic functions h, but we use L

h for
superharmonic h as well [Grigor’yan-Verbitsky 2019].
Notice that L

h can be written in the form

L

h

v = �

h

v +

�h

h

v , (7)

where v 2 C

2

(⌦) and �

h is the h-Laplacian defined by

�

h

v =

1

h

2

div!(h
2rv). (8)

Note that �h is the Laplace operator for the measure h

2

dm = h

2!dm

0

.
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Green functions

Recall that, for a general weight !, the Laplace operator L = � is
symmetric with respect to the measure m. Moreover, � satisfies the
Chain Rule and the Product Rule, like in the case ! = 1, when � = L

0

is the Laplace-Beltrami operator.

For any open connected set ⌦ ✓ M , we denote by G

⌦

(x, y) the infimum
of all positive fundamental solutions of � in ⌦.

Then the following is true:

either G

⌦

(x, y) ⌘ +1 or G

⌦

(x, y) < +1 for all x 6= y .

In the latter case we will say that G

⌦ is non-trivial , and call G⌦ the
minimal Green function (positive, symmetric) of � in ⌦.

The existence of a non-trivial G⌦ is the only assumption on ⌦ that we
impose.
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Green potentials

If G

⌦ is the non-trivial minimal Green function, then for any
µ 2 M+

(⌦), the Green potential G⌦µ is defined by

G

⌦µ (x) =

Z

⌦

G

⌦

(x, y) dµ (y) .

For a nonnegative f 2 L

1

loc

(⌦,m), we set G⌦

f := G

⌦

(f dm).
For a signed function f 2 L

1

loc

(⌦,m),

G

⌦

f (x) = G

⌦

f

+

(x) � G

⌦

f� (x)

assuming at least one of the following:

G

⌦

f

+

(x) < +1, or G

⌦

f� (x) < +1.

Then G

⌦

f (x) is said to be well -defined .

Remark. If ⌦ is relatively compact then G

⌦ is non-trivial,
G

⌦

(x, ·) 2 L

1

(⌦), and G

⌦

f is finite for any f 2 L

1
(⌦).
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Local case: semi-linear inequalities

(with boundary conditions)

Our main goal is to obtain “sharp” pointwise estimates of positive
sub/super-solutions to the following model semi-linear problem.

Problem. Let ⌦ ⇢ M be an open relatively compact connected
subdomain of M . Given V 2 C(⌦), µ 2 C

�
⌦

�
, ⌫ 2 C(@⌦),

µ, ⌫ � 0, assume that there exists a nonnegative solution u to the
following semi-linear Dirichlet problem:

(
��u + V u

q � µ in ⌦

u � ⌫ in @⌦,
(9)

if q > 0, and (
��u + V u

q  µ in ⌦

u  ⌫ in @⌦,
(10)

if q < 0.
Remark. Here u 2 C

2

(⌦) \ C

�
⌦

�
is a classical solution.
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The auxiliary linear Dirichlet problem

Remark. Analogues for general domains ⌦ ✓ M (not necessarily
relatively compact) and non-smooth coe�cients/data are discussed
below.

We will compare u to the solution h of the following auxiliary linear
Dirichlet problem: (

��h = µ in ⌦,

h = ⌫ in @⌦,

where h � 0 is superharmonic in ⌦ (µ, ⌫ � 0), for regular domains ⌦.
We will write

h = P

⌦⌫ + G

⌦µ.

For smooth domains P⌦⌫ and G

⌦µ are given by the Poisson and Green
integrals respectively.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 13 / 47



Main results: local case

Theorem 3 (Grigor’yan-Verbitsky 2019)

Let (M,m) be a weighted manifold, ⌦ ⇢ M an open relatively compact
subdomain of M , @⌦ regular, V 2 C(⌦), µ 2 C

�
⌦

�
, ⌫ 2 C(@⌦),

µ, ⌫ � 0, µ locally Hölder continuous, either µ 6⌘ 0 or ⌫ 6⌘ 0, which
ensures that h > 0 in ⌦.
Suppose u 2 C

2

(⌦) \ C

�
⌦

�
is a non-negative super-solution to (9) if

q > 0, or sub-solution to (10) if q < 0.
Then the following statements hold for all x 2 ⌦.

(i) If q = 1, then

u(x) � h(x)e

� 1

h(x)

G

⌦

(hV )(x)

. (11)
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Main results: local case (continuation)

Theorem 3 (statements (ii), (iii))

(ii) If q > 1, then necessarily the condition

�(q � 1)G

⌦

(h

q

V )(x) < h(x) (12)

holds in ⌦, and

u(x) � h(x)

"
1 + (q � 1)

G

⌦

(h

q

V )(x)

h(x)

#� 1

q�1

. (13)

(iii) If 0 < q < 1, then

u(x) � h(x)

"
1 � (1 � q)

G

⌦

(�
⌦

+

h

q

V )(x)

h(x)

# 1

1�q

+

, (14)

where ⌦

+

= {x 2 ⌦ : u(x) > 0}.
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Main results: local case

(continuation)

Theorem 3 (statement (iv))

(iv) If q < 0 and u > 0 in ⌦ then necessarily the condition

(1 � q)G

⌦

(h

q

V )(x) < h(x), (15)

holds in ⌦, and

u(x)  h(x)

"
1 � (1 � q)

G

⌦

(h

q

V )(x)

h(x)

# 1

1�q

, (16)

provided G

⌦

(h

q

V )(x) is well-defined.
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Inequalities for Lhv ; v = ��1

⇣
u

h

⌘
, � increasing

Lemma (inequalities for the Doob transform)

Let h be a positive C

2-function in ⌦. Let u be a solution of

��u + V u

q � ��h (17)

in ⌦, where V 2 C (⌦) and q 2 R \ {0} . Let � be a C

2 function on an
interval I ⇢ R such that �0 > 0 in I . Assume u

h

(⌦) ⇢ � (I ).

Then v = ��1

�
u

h

�
satisfies the di↵erential inequality:

�L

h

v + h

q�1

V

�(v)q

�0
(v)

� L

h

1

✓
�(v) � 1

�0
(v)

� v

◆
+

�00
(v)

�0
(v)

|rv |2. (18)

If in place of (17) we have

��u + Vu

q  ��h, (19)

then (18) holds with  instead of �.
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Proof of the lemma

Recall that L

h

=

1

h

� � � h. In particular, L

h

1 =

�h

h

.

Set ũ =

u

h

, so that L

h

ũ =

1

h

�u. Divide both sides of (17) by h:

�L

h

ũ + h

q�1

V ũ

q � �L

h

1. (20)

By the Chain Rule, for any v 2 C

2

(⌦)

�

h�(v) = �0
(v)�

h

v + �00
(v)|rv |2.

By (7) applied to ũ = �(v), we have L

h

ũ = �

h

ũ +

�h

h

ũ. Hence,

L

h�(v) = �

h�(v) +
�h

h

�(v)

= �0
(v)�

h

v + �00
(v)|rv |2 +

�h

h

�(v)

= �0
(v)(�

h

v +

�h

h

v) + �00
(v)|rv |2 +

�h

h

�
�(v) � v�0

(v)

�

= �0
(v)L

h

v + �00
(v)|rv |2 +

�h

h

�
�(v) � v�0

(v)

�
.
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End of the proof

Therefore, solving for L

h

v , we have

� L

h

v = �
L

h�(v)

�0
(v)

+

�00
(v)

�0
(v)

|rv |2 +
�h

h

✓
�(v)

�0
(v)

� v

◆
. (21)

Since ũ = �(v), it follows that (20) yields the following estimate:

�L

h�(v) + h

q�1

V �(v)q � �L

h

1.

Substituting this inequality into (21), we get rid of L

h�(v):

�L

h

v + h

q�1

V

�(v)q

�0
(v)

� L

h

1

✓
�(v) � 1

�0
(v)

� v

◆
+

�00
(v)

�0
(v)

|rv |2.

This proves the desired inequality for L

h

v .

The converse inequality with  in place � is proved in the same way.
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Inequalities for � (hv); v = ��1

⇣
u

h

⌘

� increasing, convex

Corollary (superharmonic h)

Under the hypotheses of the Lemma, assume in addition �h  0 in ⌦

and 0 2 I .
(i) If � is convex in the interval I , so that

�(0) = 1, �0 > 0, �00 � 0, (22)

and u satisfies ��u + Vu

q � ��h, then the function v = ��1

�
u

h

�

satisfies the following inequality in ⌦:

�� (hv) + h

q

V

�(v)q

�0
(v)

� 0. (23)
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Inequalities for � (hv); v = ��1

⇣
u

h

⌘

� increasing, concave

Corollary (superharmonic h)
(ii) If � is concave in the interval I , so that

�(0) = 1, �0 > 0, �00  0, (24)

and u satisfies ��u + Vu

q  ��h, then v satisfies

�� (hv) + h

q

V

�(v)q

�0
(v)

 0. (25)
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Proof of the corollary

To prove (i), notice that, for a convex � such that �0 > 0, �(0) = 1,

�(v) � 1

�0
(v)

� v � 0,

since the chord of the graph of the convex function � between the points
(0, 1) and (v ,� (v)) lies above the tangent line at (v ,� (v)).
Using also that L

h

1 =

�h

h

 0, we obtain from the Lemma:

�L

h

v + h

q�1

V

�(v)q

�0
(v)

� 0,

which is equivalent to (23), since �(hv) = h L

h

v .
The proof of statement (ii) is similar.
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A comparison principle for superharmonic functions

The following two lemmas enable us to get rid of some technical
assumptions like inf

⌦

h > 0 initially used in the proofs below.

Lemma (a comparison principle)

Suppose ⌦ ✓ M is open, and F is a superharmonic function in ⌦.
Suppose F = F

1

+ F

2

where lim inf

x!z

F

1

(x) � 0 for every z 2 @1⌦,
and F

2

� �P, where P = G

⌦µ is a Green potential of a positive
measure µ in ⌦, P 6⌘ +1 on every component of ⌦. Then F � 0 in ⌦.

Proof.

The function F + P is obviously superharmonic, and F + P � F

1

. Hence
lim inf

x!z

(F + P)(x) � 0 for z 2 @1⌦, and by the maximum principle
F + P � 0 on ⌦. Hence F is a superharmonic majorant of �P, whose
least superharmonic majorant must be zero, which yields F � 0.

Remark. The case P = 0 gives the usual form of the maximum principle.
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A version of the maximum principle

The following version of the maximum principle will be frequently used
below. It is deduced from the previous comparison lemma.

Lemma (a maximum principle)

Let ⌦ be an open subset of M with non-trivial Greeen’s function, and let
v 2 C

2

(⌦) satisfy

⇢
��v � f in ⌦,
lim inf

x!@1⌦

v (x) � 0,

where f 2 C (⌦) such that G⌦

f is well defined in ⌦. Then

v (x) � G

⌦

f (x) , 8x 2 ⌦. (26)
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Semi-linear problems in “nice” domains

under the assumption inf

⌦

h > 0

Lemma (proof of Theorem 3: inf

⌦

h > 0, smooth boundary)

Suppose ⌦ is a relatively compact domain in M with smooth boundary.
Suppose u 2 C

2

(⌦) \ C

�
⌦

�
, V 2 C

�
⌦

�
, and µ, ⌫ are non-negative

functions such that ⌫ 2 C(@⌦), and µ 2 C

�
⌦

�
\ C

↵
(⌦) for some

↵ 2 (0, 1]. Let
h = P

⌦⌫ + G

⌦µ. (27)

If inf
⌦

h > 0, then the following statements hold.
(i) In the case q > 0, if u > 0 is a solution of

(
��u + Vu

q � µ in ⌦,

u � ⌫ in @⌦,
(28)

then statements (i)-(iii) of Theorem 3 are valid (lower bounds for u).
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Semi-linear problems in “nice” domains

under the assumption inf

⌦

h > 0

Lemma (continuation)

(ii) In the case q < 0, if u > 0 is a solution of

(
��u + Vu

q  µ in ⌦,

u  ⌫ in @⌦,
(29)

then statement (iv) of Theorem 3 is valid (upper bounds for u).

Remarks. 1. The technical assumption inf

⌦

h > 0 is removed using the
maximum principle lemma stated above.
2. The restriction that ⌦ has a smooth boundary is unnecessary, and will
be removed below.
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Proof of the Lemma

By the hypotheses, h 2 C

2

(⌦), ��h = µ, and h > 0 in ⌦. Choose the
function � in the Corollary to satisfy the equation

�0
(v) = �(v)q. (30)

For q = 1, this gives
�(v) = e

v , v 2 R, (31)

while for q 6= 1, we obtain

�(v) = [(1 � q)v + 1]

1

1�q , v 2 I

q

, (32)

where the domain I

q

of � is given by:

I

q

=

8
><

>:

(� 1

1�q

,+1) if q < 1,

(�1,+1) if q = 1,

(�1, 1

q�1

) if q > 1.

(33)

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 27 / 47



Proof of the Lemma

(continuation)

Note that in all cases � (I

q

) = (0,1). Also, we have

�0
(v) = [(1 � q)v + 1]

q

1�q , �00
(v) = q[(1 � q)v + 1]

2q�1

1�q . (34)

Since u = h� (v), all the estimates in the case q > 0 follow from:

v(x) � �
1

h(x)

G

⌦

(h

q

V )(x) for all x 2 ⌦. (35)

For q < 0, we will have the opposite inequality.
Let us use the function hv expressed explicitly via u and h as follows:

hv =

8
>><

>>:

1

q�1

h

⇣
1 � (

h

u

)

q�1

⌘
if 1 < q < +1,

h log(

u

h

) if q = 1,
1

1�q

�
h

q

u

1�q � h

�
if � 1 < q < 1.

(36)
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Proof of the Lemma

(continuation)

Since u > 0, h > 0 in ⌦, we have u

h

(⌦) ⇢ �(I
q

) = (0,1), and
hv 2 C

2

(⌦).
In the case q > 0 the function � is concave, increasing, and �(0) = 1.
We obtain from the Corollary,

�� (hv) + h

q

V � 0. (37)

Since u � ⌫ > 0 on @⌦, and consequently inf

⌦

u > 0, we actually have
hv 2 C

�
⌦

�
\ C

2

(⌦), and hv � 0 on @⌦, which by the maximum
principle implies (35).
In addition, if q > 1, then I

q

= (�1, 1

q�1

), so that v(x) < 1

q�1

.

Combining this estimate with (35) gives the necessary condition for the
existence of u:

�G

⌦

(h

q

V )(x) <
1

q � 1

h(x), for all x 2 ⌦.
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Proof of the Lemma

(continuation)

Similarly, in the case q < 0, we have hv 2 C

�
⌦

�
\ C

2

(⌦) since
inf

⌦

h > 0. The inequality u  ⌫ on @⌦ yields the boundary condition
hv  0 on @⌦. By the Corollary we obtain that in ⌦,

� � (hv) + h

q

V  0, for all x 2 ⌦. (38)

Together with the boundary condition this yields by the maximum principle

v(x)  �
1

h(x)

G

⌦

(h

q

V )(x), for all x 2 ⌦. (39)

In view of (36), this translates into the desired inequality (16) for u.

Moreover, since I

q

=

⇣
� 1

1�q

,+1
⌘
, in this case v(x) > � 1

1�q

.

Combining this estimate with (39) yields the necessary condition (15) for
the existence of u, namely (1 � q)G

⌦

(h

q

V )(x) < h(x), 8x 2 ⌦.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 30 / 47



Proof of Theorem 3

Suppose ⌦ ⇢ M is a relatively compact domain whose boundary is regular
with respect to the Dirichlet problem. Let

h = P

⌦⌫ + G

⌦µ > 0 in ⌦. (40)

Since µ is uniformly bounded in ⌦, we have

G

⌦µ  (sup

⌦

µ)G⌦

1,

and hence by the regularity of @⌦,

lim

y!x

G

⌦µ(y) = lim

y!x

G

⌦

1(y) = 0, lim

y!x

P

⌦⌫(y) = ⌫(x), x 2 @⌦.

It follows h 2 C

2

(⌦) \ C

�
⌦

�
, ��h = µ, and

lim

y!x

h(y) = lim

y!x

u(y) = ⌫(x), x 2 @⌦.
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Proof of Theorem 3(continuation)

For ✏ > 0, set u✏ = u + ✏, h✏ = h + ✏, and define the function v✏ via

u✏

h✏
= � (v✏) ,

where � is chosen as in the proof of the previous Lemma. Note that
h✏ > 0 is superharmonic in ⌦, and ��h✏ = µ. Clearly,
h✏, u✏, v✏ 2 C

2

(⌦) \ C

�
⌦

�
.

Identity (21) applied to h✏, u✏, v✏ in place of h, u, v gives

��(h✏v✏) =
��u

�0
(v✏)

+

�00
(v✏)

�0
(v✏)

|rv |2h✏ + �h

✓
�(v✏)

�0
(v✏)

� v✏

◆
,

where

�0
(v✏) = �(v✏)

q

=

✓
u✏

h✏

◆
q

.
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Proof of Theorem 3 (continuation)

Suppose q > 0 and ��u � �Vu

q

+ µ, µ = ��h. Hence,

��(h✏v✏) � �h

q

✏

✓
u

u✏

◆
q

V+

�00
(v✏)

�0
(v✏)

|rv |2h✏+�h

✓
�(v✏) � 1

�0
(v✏)

� v✏

◆
.

Drop the last two non-negative terms on the right:

��(h✏v✏) + h

q

✏

✓
u

u✏

◆
q

V � 0.

Hence, the function

h✏v✏ + G

⌦

✓
h

q

✏

✓
u

u✏

◆
q

V

◆

is superharmonic in ⌦, and has non-negative boundary values:

h✏v✏ = (⌫ + ✏)��1

✓
u + ✏

⌫ + ✏

◆
� (⌫ + ✏)��1

(1) = 0 on @⌦,

since u � ⌫ on @⌦, � is increasing, and �(0) = 1.
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Proof of Theorem 3 (continuation)

Consequently, by the maximum principle lemma,

h✏v✏ � �G

⌦

✓
h

q

✏

✓
u

u✏

◆
q

V

◆
in ⌦. (41)

Since u  u✏, this implies

h✏v✏ � �G

⌦

�
h

q

✏ V

+

�
, (42)

where, in the case q > 1 we additionally have

�
G

⌦

�
h

q

✏ V

+

�

h✏
 �

G

⌦

⇣
h

q

✏

⇣
u

u✏

⌘
q

V

⌘

h✏
 v✏ <

1

q � 1

. (43)

Let us show that in the case q � 1 actually u > 0 in ⌦. In terms of u✏,
estimate (42) gives, for q � 1,

u✏ � h✏(x)�

 
�

G

⌦

�
h

q

✏ V

+

�

h✏

!
. (44)
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Proof of Theorem 3 (continuation)

Clearly, h✏ # h, where h > 0 by (40). Passing to the limit as ✏ ! 0, we
deduce by the dominated convergence theorem, for q � 1,

u � h�

 
�

G

⌦

(h

q

V

+

)

h

!
> 0 in ⌦.

Note that here, for q > 1, we have a strict inequality

�
G

⌦

(h

q

V

+

) (x)

h(x)

<
1

q � 1

,

since otherwise u(x) = +1.
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Proof of Theorem 3 (continuation)

Hence, in the case q � 1, we have u > 0 in ⌦. Consequently u

u✏
" 1 as

✏ # 0, and by the dominated convergence theorem,

lim

✏!0

G

⌦

✓
h

q

✏

✓
u

u✏

◆
q

V

◆
= G

⌦

(h

q

V ) . (45)

The main estimate restated in terms of u✏:

u✏ � h✏(x)�
⇣
�

G

⌦

⇣
h

q

✏

⇣
u

u✏

⌘
q

V

⌘

h✏

⌘
, (46)

where by (43) the right-hand side is well-defined. Passing to the limit as
✏ # 0, we deduce, for q � 1,

u � h�
⇣
�

G

⌦

(h

q

V )

h

⌘
.

For q > 1, additionally,

�
G

⌦

(h

q

V )

h

<
1

q � 1

.
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Proof of Theorem 3 (continuation)

A similar argument applies for 0 < q < 1, but in this case u can be equal
to zero on an open set, so that u

u✏
" �

⌦

+ as ✏ # 0. Passing to the limit in
(41) using the dominated convergence theorem as above gives

hv � �G

⌦

(�
⌦

+

h

q

V ) ,

which is equivalent to the desired lower estimate for u.
In the case q < 0, we define the function v✏ in a slightly di↵erent way, via
the equation

u

h✏
= �(v✏),

where as before h✏ = h + ✏, so that ��h✏ = µ, and

h✏ v✏ =

1

1 � q

h

q

✏ (u

1�q � h

1�q

✏ ) 2 C

2

(⌦) \ C(⌦). (47)

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 37 / 47



Proof of Theorem 3 (continuation)

Then
��(h✏v✏) + h

q

✏ V  0.

Since u  ⌫ on @⌦, it follows

h✏v✏ =

1

1 � q

(⌫ + ✏)q (u

1�q � (⌫ + ✏)1�q

)  0 on @⌦.

Hence,
h✏v✏  �G

⌦

(h

q

✏ V ) in ⌦, (48)

or, equivalently,

u  h✏

"
1 � (1 � q)

G

⌦

(h

q

✏ V )

h✏

# 1

1�q

in ⌦. (49)
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Proof of Theorem 3 (continuation)

From the above estimates we deduce

�
G

⌦

(h

q

✏ V )

h✏
� v✏ > �

1

1 � q

, (50)

so that the expression in square brackets in is always positive. Moreover,

�
G

⌦

(h

q

✏ V

+

)

h✏
+

G

⌦

(h

q

V�)

h

> �
1

1 � q

. (51)

Since q < 0, we have h

q

✏ " h

q as ✏ # 0. Using dominated convergence,

�
G

⌦

(h

q

V )(x)

h(x)

� �
1

1 � q

. (52)

Notice that here G

⌦

(h

q

V

+

)(x) < +1; otherwise

G

⌦

(h

q

V±)(x) = +1,

which contradicts the assumption that G⌦

(h

q

V )(x) is well-defined.
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Proof of Theorem 3 (continuation)

Clearly, (49) yields the following inequality at x :

u  h✏

"
1 � (1 � q)

G

⌦

(h

q

✏ V

+

)

h✏
+ (1 � q)

G

⌦

(h

q

V�)

h

# 1

1�q

. (53)

By the dominated convergence theorem, we obtain the corresponding
upper estimate at x :

u(x)  h(x)

"
1 � (1 � q)

G

⌦

(h

q

V )(x)

h(x)

# 1

1�q

.

Since by assumption u(x) > 0, the expression in square brackets must be
strictly positive (the desired necessary condition).
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Extensions of Theorem 3

We continue our discussion of pointwise estimates of solutions in the local
case for arbitrary domains ⌦ ✓ M (not necessarily relatively compact).
Denote by @1M the infinity point of the one-point compactification of
M . For any open subset ⌦ ✓ M denote by @1⌦ the union of @⌦ and
@1M , if ⌦ is not relatively compact (infinite boundary of ⌦). We set
@1⌦ = @⌦ if ⌦ is relatively compact.

Definition

For a function u defined in ⌦ ✓ M , we write

lim

y!@1⌦

u (y) = 0, (54)

if lim
k!1 u (y

k

) = 0 for any sequence {y
k

} in ⌦ that converges to a
point of @1⌦; the latter means, that either {y

k

} converges to a point on
@⌦ or diverges to @1M . In the same way we understand similar
equalities and inequalities involving lim sup and lim inf .
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Local case

For example, if ⌦ is relatively compact, then (54) means that
lim

k!1 u (y

k

) = 0 for any sequence {y
k

} converging to a point on @⌦.
If ⌦ = M then @⌦ = ; and (54) means that lim

k!1 u (y

k

) = 0 for
any sequence y

k

! @1M , that is, for any sequence {y
k

} that leaves any
compact subset of M .

In particular, for M = Rn, (54) is equivalent to u (y) ! 0 as |y | ! 1.

We will use the notation

�
u

(x) =

⇢
1, u (x) > 0,
0, u (x)  0.
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Main results: local case

Theorem 4 (Grigor’yan-Verbitsky 2019)

Let (M,m) be an arbitrary weighted manifold. Let ⌦ ✓ M be a
connected open subset of M with a finite Green function G

⌦. Suppose
V , f 2 C(⌦), where f � 0, f 6⌘ 0 in ⌦. Let u 2 C

2

(⌦) satisfy

in the case q > 0 : � �u + Vu

q � f in ⌦, u � 0, (55)

or

in the case q < 0 : � �u + Vu

q  f in ⌦, u > 0. (56)

Set h = G

⌦

f and assume that h < 1 in ⌦. Assume also that
G

⌦

(h

q

V )(x) (respectively G

⌦

(�
u

h

q

V )(x) in the case 0 < q < 1) is
well-defined for all x 2 ⌦.
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Main results: local case

(continuation)

Theorem 4 (statements (i)-(ii))

Then the following statements hold for all x 2 ⌦.
(i) If q = 1, then

u(x) � h(x)e

� 1

h(x)

G

⌦

(hV )(x)

. (57)

(ii) If q > 1, then necessarily

�(q � 1)G

⌦

(h

q

V )(x) < h(x), (58)

and the following estimate holds:

u(x) �
h(x)

h
1 + (q � 1)

G

⌦

(h

q

V )(x)

h(x)

i 1

q�1

. (59)
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Main results: local case

(continuation)

Theorem 4 (statements (iii)-(iv))

(iii) If 0 < q < 1, then

u(x) � h(x)

"
1 � (1 � q)

G

⌦

(�
u

h

q

V )(x)

h(x)

# 1

1�q

+

. (60)

(iv) If q < 0 and lim

y!@1⌦

u (y) = 0, then necessarily (58) holds, and

u(x)  h(x)

"
1 � (1 � q)

G

⌦

(h

q

V )(x)

h(x)

# 1

1�q

. (61)

Remarks. 1. Condition f 6⌘ 0 implies h = G

⌦

f > 0 in ⌦.
2. No boundary conditions are imposed in the case q > 0.
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Remarks

(continuation)

Remarks. 3. In the case q � 1, it follows from (57) and (59) that the
condition

G

⌦

(h

q

V ) (x) < +1

implies u(x) > 0. Moreover, if for some 0 < C < 1

q�1

and all x 2 ⌦,

G

⌦

(h

q

V ) (x)  C h (x) ,

then u � c h in ⌦ with some constant c = c (C , q) > 0.

4. In the case 0 < q < 1, the function u can vanish in ⌦, but the
estimate of u does not depend on the values of V on the set {u = 0}.
This explains the appearance of the factor �

u

and the subscript + on the
right-hand side of (60).

5. In the case q < 0, the boundary condition lim

y!@1⌦

u (y) = 0 is
essential; without it u does not admit any upper bound.
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Main results: local case

(continuation)

The proof of Theorem 4 reduces to Theorem 3 above that deals with
relatively compact sets ⌦ ⇢ M , using an exhaustion of ⌦ =

S1
k=1

⌦

k

by
means of increasing relatively compact sets ⌦

k

with smooth boundary, and
approximation of f . We omit the details (see [Grigor’yan-Verbitsky 2019],
Proof of Theorem 3.1).

In the next theorem we give estimates of solutions u of semi-linear
inequalities (55)-(56) with f ⌘ 0. (Theorem 4 requires that f 6⌘ 0.) Such
results are applicable to the so-called gauge function for Schrödinger
equations (q = 1), large solutions for super-linear equations (q > 1), or
ground state solutions (�1 < q < 1) to the corresponding equations
and inequalities in unbounded domains in Rn or on noncompact manifolds.
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