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Integral inequalities for nondecreasing nonlinearities

Theorem 10 (lower estimate)

Let � 2 M+

(⌦), and let K be a (WMP)-kernel on ⌦ with constant
b � 1. Let g : [1,+1) ! [1,+1) be nondecreasing, continuous. If
Au = K(g(u)d�), and u � Au + 1 d�-a.e., then

u(x) � 1 + b
h

F

�1

⇣

b�1

K�(x)
⌘

� 1

i

, (1)

for all x 2 ⌦ such that Au(x) + 1  u(x) < +1, where necessarily

b�1

K�(x) < a :=

Z

+1

1

ds

g(s)

. (2)

Remarks. 1. We will give below a proof of Theorem 10. A similar proof
of Theorem 11 for noninreasing g is omitted.
2. Theorem 9 with g(t) = t

q , but with any h > 0 in place of 1 will be
proved after that.
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Proof of Theorem 10
For any t � 0, we set as above,

� (t) = g (t + 1) and  (t) = �(b�1

t) = g(b�1

t + 1). (3)

As in the iterations lemma, define the sequence {f
k

}1
k=0

on ⌦ by

f

0

:= K�, f

k+1

:= K [(� (f

k

)) d�] .

We claim that, for all k � 0,

u � f

k

+ 1 in ⌦. (4)

Indeed, since u � 1, we have u � A1 + 1 = K� + 1, and consequently

u � Au + 1 � f

0

+ 1,

that is, (4) holds for k = 0. If (4) is already proved for some k � 0,

u � Au + 1 � K [(� (f

k

)) d�] + 1 = f

k+1

+ 1,

which completes the proof of (4).
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Proof of Theorem 10
(continuation)

Consider now the sequence { 
k

}1
k=0

on [0,1) so that  
0

(t) := t and

 
k+1

(t) :=

Z

t

0

 �  
k

(s)ds. (5)

By the iterations lemma, we have, for all x 2 ⌦ and k � 0,

f

k

(x) �  
k

(f

0

(x)) ,

which together with (4) yield

u (x) �  
k

(K� (x)) + 1 for all x 2 ⌦.

By (3), the function  is non-decreasing and  � 1, which implies that
 

k+1

(t) �  
k

(t) for all t � 0. Indeed, for k = 0 it follows from

 
1

(t) =

Z

t

0

 (t) dt � t =  
0

(t) ,

and  
k

�  
k�1

=)  
k+1

�  
k

by (5) and the monotonicity of  .
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Proof of Theorem 10
(continuation)

We now set
 1 (t) := lim

k!1
 

k

(t) .

Hence, letting k ! 1 in the preceding estimates, we deduce

u (x) �  1 (K� (x)) + 1 for all x 2 ⌦. (6)

Let us fix x 2 ⌦ such that u(x) < +1. It follows from (6) that

t

0

:= K�(x) < +1 and  1 (t

0

) < 1.

Without loss of generality we may assume that t

0

> 0 since in the case
K�(x) = 0 the desired estimates are obvious. We see that the function
 1 is finite on [0, t

0

], positive on (0, t
0

], and by the monotone
convergence theorem, satisfies the integral equation

 1(t) =

Z

t

0

 �  1(s) ds, 0  t  t

0

. (7)
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Proof of Theorem 10
(continuation)

Hence,  1 is continuously di↵erentiable on [0, t
0

] and satisfies the ODE

d 1
dt

=  ( 1(t)),  1(0) = 0. (8)

Setting

 (⇠) =

Z ⇠

0

ds

 (s)
= b F (1 + b�1⇠) (9)

and observing that by the Chain Rule and (8),

d ( 1)(t)

dt

=

✓

d 

dt

�  1

◆

(t)

d 1
dt

= 1,

we obtain that, for any t 2 [0, t
0

],

 ( 1(t)) = t. (10)
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Proof of Theorem 10
(continuation)

It follows from (9) with ⇠ =  1(t

0

), and (10) with t = t

0

, that

 ( 1(t

0

)) = F (1 + b�1 1 (t

0

)) = b�1

t

0

. (11)

Since all the values of F must be contained in the interval [0, a), we
deduce from (11) that

b�1

t

0

< a,

where t

0

= K�(x). This is equivalent to the necessary condition (2).
Finally, we obtain from (11) that

 1 (t

0

) = b
h

F

�1

⇣

b�1

t

0

⌘

� 1

i

.

Substituting this into (6), that is u(x) �  1 (t

0

) + 1, yields
u(x) � b

⇥

F

�1

�

b�1

t

0

�

� 1

⇤

+ 1. This completes the proof of (1).
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Nonlinear inequalities u � K(uqd�) + h

Let � 2 M+

(⌦), and let K be a lower semicontinuous kernel. Consider
inequalities

+1 > u(x) � K(u

q

d�)(x) + h(x) d�-a.e. in ⌦,

in the case q > 0. Here h is a positive lower semicontinuous function in
⌦. In particular, inf

F

h > 0 for every compact set F ⇢ ⌦.

We also consider inequalities

0 < u(x)  �K(u

q

d�)(x) + h(x) d�-a.e. in ⌦,

in the case q < 0.

We use the notation

⌦

0
= {x 2 ⌦ : h(x) < +1.}
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Nonlinear inequalities u � K(uqd�) + h
(continuation)

In most applications, K = G

⌦ is a positive Green’s function, and h is a
positive superharmonic function, i.e.,

h = Gµ + h

0

> 0, µ 2 M+

(⌦), h � 0, �h

0

= 0,

where h

0

is the largest harmonic minorant of h.

The case where h = const > 0 was considered above. To treat the
general case, along with the kernel K(x, y), we will consider the modified
kernel

e

K(x, y) =
K(x, y)

h(x) h(y)

for x, y 2 ⌦0.

Notice that if +1 > u � K(u

q

d�) + h d�-a.e., then obviously

�(⌦ \ ⌦0
) = 0.
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Domination principle

Remark. e

K satisfies (WMP) in ⌦0 provided K satisfies the following
weak form of the domination principle (WDP) in ⌦:

Given a lower semicontinuous function h in ⌦,

Kµ(x)  M h(x), 8 x 2 supp(µ) =) Kµ(x)  bM h(x), 8 x 2 ⌦

for any compactly supported µ 2 M+

(⌦) such that Kµ is bounded (or
for any µ with finite energy), and any constant M > 0.

This property is sometimes called a b-dilated domination principle. The
classical domination principle with b = 1 holds for Green’s kernels
K = G associated with a large class of local and non-local operators, and
any superharmonic h > 0. In the case h = K⌫ + a where ⌫ 2 M+

(⌦)

and a � 0 is a constant, it is called the complete maximum principle.
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Example: quasi-metric kernels
A useful example is given by quasi-metric kernels K on ⌦⇥ ⌦
(see [Kalton-Verbitsky 1999], [Hansen 2006], [Frazier-Nazarov-V. 2014]):

K(x, y) =
1

d(x, y)
, x, y 2 ⌦,

where d is a quasi-metric, i.e., d : ⌦⇥ ⌦! [0,+1), d 6⌘ 0,
d(x, y) = d(y , x), and there exists a quasi-metric constant { � 1

2

such that the quasi-triangle inequality holds:

d(x, y)  { [d(x, z) + d(y , z)], 8 x, y , z 2 ⌦.

Remark. d(x, y) ⇡ ⇢(x, y)� for some � = �({), where ⇢ is a metric
[Aoki-Rolewicz 1942/57] for linear spaces, [Heinonen 2001] in general.

Lemma (WMP for quasi-metric kernels)

Suppose K is a quasi-metric kernel in ⌦ with quasi-metric constant {.
Then K satisfies the (WMP) with constant b = 2{.
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Example: Quasi-metric kernels

Many kernels K are quasi-metrically modifiable: the modified kernel
e

K(x, y) = K(x,y)
h(x) h(y)

(with some h > 0) is quasi-metric (with some

modifier h > 0). True for K = G

⌦ in bounded uniform domains (in
particular Lipschitz and NTA domains).

Lemma (Hansen 2005)

Let ⌦ ⇢ Rn (n � 3) be a bounded uniform domain (satisfies the interior
corkscrew condition and the Harnack chain condition. Define a
superharmonic modifier m(x) = min[1, G

⌦

(x, x
0

)], where x

0

2 ⌦ is a
fixed pole. Then the modified Green’s kernel

e

G

⌦

(x, y) =
G

⌦

(x, y)

m(x)m(y)

, x, y 2 ⌦,

is a quasi-metric kernel (with a constant { independent of x

0

).
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Example: quasi-metric kernels
For w 2 ⌦, let ⌦

w

= {x 2 ⌦ : K(x,w) < +1}. Then e

K is
quasi-metric in ⌦

w

if h = K⌫, where ⌫ is supported at a single point w ,
i.e., h(x) = c K(x,w), c > 0. The following lemma yields the (WDP)

for quasi-metric kernels.

Lemma (Frazier-Nazarov-Verbitsky 2014)

Suppose K is a quasi-metric kernel in ⌦ with constant {. Then

K

w

(x, y) =
K(x, y)

K(x,w)K(y ,w)

, x, y 2 ⌦
w

,

is a quasi-metric kernel on ⌦
w

with quasi-metric constant 4{2.
In particular, K

w

satisfies the (WMP) in ⌦
w

with constant b = 8{3.

The lemma follows from the Ptolemy inequality in quasi-metric geometry,

d(x, y) d(z,w)  4{2

[d(x,w) d(y , z)+d(x, z) d(y ,w)], 8 x, y , z,w .
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Example: quasi-metric kernels

Recall the following

Lemma (WMP for modified kernels)

Suppose K is a kernel in ⌦ which satisfies the (WDP). Suppose
h = K⌫ 6⌘ +1 where ⌫ 2 M+

(⌦). Then the modified kernel e

K

satisfies the (WMP) in ⌦0 with the same constant b.
In particular, if the (WDP) holds for K with b = 1, then e

K satisfies the
strong maximum principle in ⌦0.

Lemma (WMP for modified quasi-metric kernels)

Let K be a quasi-metric kernel on ⌦. Let h = K⌫ where ⌫ 2 M+

(⌦),
h 6⌘ +1. Then K satisfies the (WDP), and e

K the (WMP) in ⌦0.

We are now ready to prove Theorem 9 using Theorem 10/11 (in the
special case g(t) = t

q) and the (WMP) for e

K , or the (WDP) for K .
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Reduction to the case h ⌘ 1: Proof of Theorem 9
Remark. In the local case (Theorems 3-5), we used instead the
Doob transform.

Suppose first q > 0. Fix x 2 ⌦ so that u(x) < 1. Then x 2 ⌦0, i.e.,
h(x) < +1, and d�-a.e. WLOG we assume �(⌦ \ ⌦0

) = 0.
Let ⌦ =

S

⌦

m

be an exhaustion of ⌦: ⌦
m

" ⌦ are compact, and
⌦

0
=

S

⌦

0
m

. Let d�
m

= �
⌦

m

d� where supp(�
m

) ✓ ⌦

m

.
Setting

v(x)

:

=

u(x)

h(x)

, x 2 ⌦0,

we see that v satisfies the inequality

v(x) � e

K(v

q

d �̃
m

)(x) + 1 d �̃
m

� a.e. in ⌦
m

,

where �̃
m

2 M+

(⌦

m

) is defined by

d �̃
m

= h

1+q

d�
m

.
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Proof of Theorem 9
Notice that e

K satisfies the (WMP) in ⌦0 by the Lemma. By Theorem 10
with e

K and �̃
m

in place of K and �, it follows that v satisfies the
corresponding lower bounds

v(x) �
(

1 + b
h⇣

1 +

(1 � q)

e

K �̃
m

(x)

b

⌘

1

1�q � 1

i

)

, x 2 ⌦
m

,

where in the case q > 1 necessarily

e

K �̃
m

(x) <
b

q � 1

, x 2 ⌦
m

.

Letting m ! 1 we deduce by the monotone convergence theorem

v(x) �
(

1 + b
h⇣

1 +

(1 � q)

e

K �̃(x)

b

⌘

1

1�q � 1

i

)

, x 2 ⌦,

where in the case q > 1 necessarily

e

K �̃(x) <
b

q � 1

, x 2 ⌦; d �̃ := h

1+q

d�.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 18 / 40



Proof of Theorem 9

Passing back from (v , e

K , �̃) to (u,K ,�), we deduce the main estimates
of Theorem 9 (in the case q > 0), provided K(u

q

d�)(x)  u(x) < 1:

u(x) � h(x)

⇢

1 + b
h⇣

1 +

(1 � q)K(h

q

d�)(x)

b h(x)

⌘

1

1�q � 1

i

�

,

where in the case q > 1 necessarily h(x) < 1 and

K(h

q

d�)(x) <
b

q � 1

h(x).

Notice that in K(h

q

d�)(x) we can integrate over ⌦ in place of ⌦0 since
�(⌦ \ ⌦0

) = 0.

In the case q < 0, the main estimate and necessary condition of
Theorem 9 are deduced in a similar way from Theorem 11 if, for x 2 ⌦,
0 < h(x) < +1 and 0 < u(x)  �K(u

q

d�)(x) + h(x).
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Some applications to non-local operators,
measure coe�cients, unbounded solutions
1. Convolution equations on Rn.
Let K(x) = k(|x|) be an arbitrary radial non-decreasing kernel on Rn.
Then K satisfies the (WMP) [Ugaheri 1950], and all the estimates hold
for positive solutions to the convolution equations with monotone
nonlinearity g : [1,1) ! (0,1],

u = k ? g(u

q

d�) + 1, q 2 R \ {0}, on Rn,

and the homogeneous equation u = k ? (u

q

d�) in the sublinear case
g(t) = t

q , 0 < q < 1.
2. Parabolic equations on domains ⌦, or Riemannian manifolds,

@
t

u ��u = �u

q

+ µ, q 2 R \ {0}.

3. Elliptic equations with fractional Laplacian on domains ⌦ ✓ Rn,
0 < ↵ < n, or Riemannian manifolds, with positive Green’s function,

(��)

↵
2

u = �u

q

+ µ, 8q 2 R \ {0}.
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Sublinear weighted norm inequalities

Key weighted norm inequalities K : M+

(⌦) ! L

q

(⌦, d�) of
(1, q)-type in the case 0 < q < 1 (non-classical case):

kK⌫k
L

q

(⌦,d�)

 C k⌫k, 8⌫ 2 M+

(⌦), (12)

where k⌫kM+

(⌦)

= ⌫(⌦), and K is the integral operator with
nonnegative (WMP) kernel,

K⌫(x) =

Z

⌦

K(x, y) d⌫(y).

Weak-type weighted norm inequalities of (1, q)-type, 0 < q  1:

kK⌫k
L

q,1
(⌦,d�)

 C k⌫k, 8⌫ 2 M+

(⌦), (13)

are of some interest as well.
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Related sublinear inequalities of (1, q)-type
One can use equivalently (1, q)-type inequalities with L

1

(⌦) in place of
M+

(⌦), for kernels K with (WMP):

kKf k
L

q

(⌦,d�)

 C kf k
L

1

(⌦)

, 8f 2 L

1

(⌦). (14)

If K = G

⌦ is the Dirichlet Green kernel, then (14) is equivalent to

k�k
L

q

(⌦,d�)

 C k��k
L

1

(⌦)

, (15)

8� such that ��� � 0 and �� 2 L

1

(⌦), where �|@⌦ = 0.

Estimate (12), or (15), is key to characterizing all positive weak solutions
u 2 L

q

loc

(⌦,�) to the sublinear Dirichlet problem ��u = � u

q .

For finite energy solutions u 2 ˙

W

1,2
0

(⌦) we use instead of (15) a
˙

W

1,2
0

(⌦) ! L

1+q

(⌦, d�) weighted norm inequality:

k�k
L

1+q

(⌦,d�)

 C kr�k
L

2

(⌦,dx)

, 8� 2 ˙

W

1,2
0

(⌦).

Notice that here again 1 + q < 2 (non-classical case).
I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 22 / 40



Sublinear integral equations

The study of (1, q) weighted norm inequalities for for 0 < q < 1 is
motivated by applications to sublinear elliptic PDE of the type
(

��u = � u

q

+ µ in ⌦,

u = ⌫ on @⌦,
()

(

u = K(u

q

d�) + f in ⌦,

f = Kµ + P⌫,

where u > 0; µ,� 2 M+

(⌦); ⌫ 2 M+

b

(@⌦); P⌫ harmonic extension.
Here ⌦ ✓ Rn is a domain with non-trivial Green’s function K = G

⌦.

The only restrictions imposed on the kernel K :
(a) K is quasi-symmetric (QS);
(b) K satisfies the weak maximum principle (WMP).

Here K can be a Green operator associated with ��, or a more general
elliptic operator, including (��)

↵
2 .
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Conditions on kernels of integral operators

Let K : ⌦⇥⌦! [0,+1] be a nonnegative lower semicontinuous kernel.

Definition

A kernel K is quasi-symmetric (QS) if there exists a constant a > 0 such
that

a

�1

K(x, y)  K(y , x)  a K(x, y), x, y 2 ⌦. (16)

Definition

K � 0 is degenerate with respect to � 2 M+

(⌦) if there exists a set
A ⇢ ⌦ with �(A) > 0 such that

K(·, y) = 0 d�-a.e. 8y 2 A.

Otherwise, K is called non-degenerate with respect to �.

See [Sinnamon 2005] in the context of Schur’s lemma for positive
operators T : L

p ! L

q in the case 1 < q < p.
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Weak and strong maximum principles

If ⌫ 2 M+

(⌦), then by K⌫ and K

⇤⌫ we denote the potentials

K⌫(x) =

Z

⌦

K(x, y) d⌫(y), K

⇤⌫(x) =

Z

⌦

K(y , x) d⌫(y), x 2 ⌦.

Recall the following

Definition

K satisfies the weak maximum principle (WMP) if, for any ⌫ 2 M+

(⌦),
there exists a constant b � 1 so that

K⌫(x)  1, 8x 2 supp(⌫) =) K⌫(x)  b, 8x 2 ⌦.

If b = 1, then K satisfies the strong maximum principle (MP).

Remark. Green’s kernels of many second-order elliptic di↵erential
operators are (QS) & (WMP) [Ancona 2002].
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Potential theory
Capacities and contents

Let F ⇢ X be a compact set. For the kernel K : X ⇥ Y ! [0,+1],
consider several di↵erent related notions of capacity/content:

cap

0

(F ) = sup

n

µ(F ) : µ 2 M+

(F ), K

⇤µ(y)  1, 8 y 2 Y

o

,

cont(F ) = inf

n

�(Y ) : � 2 M+

(Y ), K�(x) � 1, 8 x 2 F

o

.

These two notions in fact coincide [Fuglede 1965] via the Minimax

Theorem. For X = Y = ⌦, the Wiener capacity is defined by

cap(F ) = sup

n

µ(F ) : µ 2 M+

(F ); K

⇤µ(y)  1, 8 y 2 supp(µ)
o

.

Note that cap
0

(F )  cap(F )  b cap

0

(F ), if K is a (WMP) kernel for
the upper estimate. The Wiener capacity is most useful if K is (QS).
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Weak-type (1, q)-inequality for integral operators

Theorem 12 (Quinn-Verbitsky 2018)

Let � 2 M+

(⌦), and 0 < q  1. Then the following statements are
equivalent:

1 There exists a constant {
w

> 0 such that

kK⌫k
L

q,1
(�)

 {
w

k⌫k, 8⌫ 2 M+

(⌦).

2 There exists a constant c > 0 such that

�(F )  c

⇣

cap

0

(F )

⌘

q

, 8 compact sets F ⇢ ⌦.

3 The condition K� 2 L

q

1�q

,1
(�) holds (for 0 < q < 1),

provided K satisfies (QS) & (WMP).

Remark. Condition (2): V.Maz’ya 1962; if q > 1, for quasi-metric kernels
enough �(B(x, r))  c r

q ; (D.Adams 1972), Riesz kernels.
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Sublinear Schur’s Lemma

Theorem 13 (Quinn-Verbitsky 2018)

Let � 2 M+

(⌦), and 0 < q < 1. Let K � 0 be a (QS) & (WMP)

kernel. Then the following statements are equivalent:

1 There exists a constant { > 0 such that

kK⌫k
L

q

(⌦,�)

 { k⌫k, 8⌫ 2 M+

(⌦). (17)

2 There exists a non-trivial supersolution u � K(u

q

d�),
u 2 L

q

(⌦, d�).

3 There exists a positive solution u = K(u

q

d�), u 2 L

q

(⌦, d�),
provided K is non-degenerate with respect to �.

Remarks. 1. The implication (1)=)(2) in Theorem 13 holds for any K .
2. The implications (2) or (3)=)(1) generally fail without the (WMP).
3. A minimal solution u = lim u

j

is constructed explicitly by iterations:

u

j+1

= K(u

q

j

d�), u

j+1

� u

j

, u

0

= c(K�)
1

1�q , c is a small constant.
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Gagliardo’s lemma

Su�ciency of (17): The implication (1)=)(2) in Theorem 13 is a special
case of Gagliardo’s lemma for more general nonlinear maps.

Lemma (Gagliardo 1965)

Let 0 < q < 1 and � 2 M+

(⌦). Let K � 0 be a kernel. Suppose the
(1, q)-weighted norm inequality (17) holds. Then for every ✏ > 0, there
is a positive supersolution u 2 L

q

(⌦,�) such that

u � K(u

q

d�)

with kukq

L

q

(⌦,�)

 (1 + ✏)
1

1�q {
q

1�q .

Remarks. 1. In general, the Lemma fails if ✏ = 0.
2. For non-degenerate K , in fact ✏ = 0, and there exists u = K(u

q�).
3. The converse fails without the (WMP), even for symmetric positive
kernels, for any ✏ > 0.
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Key weak-type (1, 1) lemma

Necessity of (17): To prove (2)=)(1) in Theorem 13, we appeal to
Potential Theory. We use some results due to [Fuglede 1960]. Suppose
WLOG that u > 0 d�-a.e., u � K(u

q�), and u 2 L

q

(⌦,�). We will
need the following key weak-type (1, 1)-inequality.

Lemma (Quinn-Verbitsky 2018)

Let K � 0 be a symmetric (WMP) kernel with constant b. Suppose
! 2 M+

(⌦) is absolutely continuous with respect to the Wiener
capacity. Then

�

�

�

�

K⌫

K!

�

�

�

�

L

1,1
(⌦,!)

 bk⌫k, 8⌫ 2 M+

(⌦), (18)

Remarks. 1. In (18) and similar expressions below, we adapt the usual
real variables convention 0

0

= 0.
2. The lemma holds for (QS) & (WMP) kernels with a di↵erent constant.
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Proof of the weak-type (1, 1) lemma

Proof of the lemma: Let t > 0. Define E

t

:

= {x 2 ⌦ :

K⌫(x)
K!(x)

> t}.
We claim that compact subsets F ⇢ E

t

have finite capacity.
This requires that K(x, x) > 0 on E

t

(K is strictly positive on E

t

).

Let A : = {x 2 ⌦ : K(x, x) = 0}. To verify that A \ E

t

= ;, notice
that by the (WMP), we have that, for all x 2 A,

K�
x

(x) = 0 =) K�
x

(y) = 0, 8y 2 ⌦.

Thus, K(x, y) = 0 on A ⇥ ⌦. It follows that, for any ⌫ 2 M+

(⌦),
K⌫(x) = 0 for x 2 A. Using the convention 0

0

= 0, we see that
K⌫(x)
K!(x)

= 0 for all x 2 A. Hence, E

t

\ A = ; as claimed. This proves

that indeed K(x, x) > 0 on E

t

.
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Proof of the weak-type (1, 1) lemma
(continuation)

Let F ⇢ ⌦ be a compact set. Assuming that K(x, x) > 0 on F , by
[Fuglede 1960], we can find an equilibrium measure µ 2 M+

(F ) such
that Kµ � 1 q.e. on F and Kµ  1 on supp(µ) ✓ F .

Thus, if N

:

= {x 2 F : Kµ(x) < 1}, it follows that !(N) = 0, since !
is absolutely continuous with respect to capacity.

Moreover, by the (WMP), we have

Kµ  1 on supp(µ) =) Kµ  b on ⌦.

From this, since K⌫
t

> K! on F , we deduce the crucial estimate

!(F ) 
Z

F

Kµ d! =

Z

F

K!
F

dµ


Z

F

K⌫

t

dµ =

1

t

Z

⌦

Kµ d⌫


1

t

Z

⌦

b d⌫ =

b

t

k⌫k.
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Proof of the weak-type (1, 1) lemma
(continuation)

As verified above, on every compact set F ⇢ E

t

, the kernel K is strictly
positive, that is, K(x, x) > 0 on F . Therefore we have

!(F ) 
b

t

k⌫k.

Taking the supremum over all such compact sets F , we conclude

!(E
t

) 
b

t

k⌫k,

for all t > 0, where

E

t

:

= {x 2 ⌦ :

K⌫(x)

K!(x)
> t}.

This establishes the desired weak-type (1, 1) estimate.
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Proof of Theorem 13

Lemma (infinity sets)

Let F be a compact set. If µ 2 M+

(F ), µ 6⌘ 0, and cap(F ) = 0, then
K

⇤µ = +1 dµ�a.e in F .

Proof: Set
E = {x 2 F : K

⇤µ(x) < +1}.

Notice that E =

S1
n=1

F

n

, where F

n

= {x 2 F : K

⇤µ(x)  n} is a
closed set by the lower semicontinuity of K , and consequently is a
compact subset of F . In particular, E is a Borel set.
Suppose that cap(F ) = 0. Then cap(F

n

) = 0, and hence µ(F
n

) = 0, for
every n = 1, 2, . . ., in view of the definition of cap(F

n

). It follows that

µ(E) 
1
X

n=1

µ(F
n

) = 0.

This proves that K

⇤µ = +1 dµ-a.e. on F .
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Proof of Theorem 13
(continuation)

Lemma (absolute continuity w/r to capacity)

Let q > 0. Suppose � 2 M+

(⌦), and K

⇤
(u

q�)  u d�-a.e., where
R

F

u

q

d� < +1 for every compact set F ⇢ ⌦. Then d! :

= u

q

d� is
absolutely continuous w/r to capacity: cap(F ) = 0 =) !(F ) = 0.
If in addition u > 0 d�-a.e. on F , then cap(F ) = 0 =) �(F ) = 0.

Proof: Suppose F is a compact set subset of ⌦. Since
K

⇤!  u d��a.e., we deduce
Z

F

(K

⇤!)q d� 
Z

F

u

q

d� = !(F ) < 1.

Hence �({x 2 F : K

⇤! = +1}) = 0. Since ! is absolutely continuous
with respect to �, it follows that !({x 2 F : K

⇤! = +1}) = 0.
If cap(F ) = 0, then by the previous lemma !(F ) = 0.
This clearly yields �(F ) = 0, unless u = 0 d�-a.e. on F .
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Proof of Theorem 13
(continuation)

We can now complete the proof of Theorem 13. WLOG we may assume
that K is symmetric. Let u 2 L

q

(⌦,�) be a positive supersolution, and
let d! :

= u

q

d�. By the Lemma, ! is absolutely continuous with respect
to capacity. Suppose ⌫ 2 M+

(⌦). If ⌫(⌦) = +1, there is nothing to
prove. In the case that ⌫(⌦) < +1, we can normalize the measure and
assume WLOG that ⌫(⌦) = 1.
Since u is a positive supersolution, we have (K!)qd�  d!. We
estimate, for any � > 0,

Z

⌦

(K⌫)q d� =

Z

⌦

✓

K⌫

u

◆

q

u

q

d� 
Z

⌦

✓

K⌫

K!

◆

q

d!

= q

Z �

0

!

✓

n

x 2 ⌦ :

K⌫(x)

K!(x)
> t

o

◆

t

q�1

dt

+ q

Z 1

�
!

✓

n

x 2 ⌦ :

K⌫(x)

K!(x)
> t

o

◆

t

q�1

dt

= I + II .
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Proof of Theorem 13
(continuation)

We first estimate term I : clearly, I  q!(⌦)
R �
0

t

q�1

dt = �q !(⌦).
By the key weak-type (1, 1) lemma, we have

!

✓

n

x 2 ⌦ :

K⌫(x)

K!(x)
> t

o

◆


h ⌫(⌦)

t

=

h

t

.

Consequently, II  q

1�q

b�q�1. Setting � =

b
!(⌦)

, we deduce

Z

⌦

(K⌫)q d� 
bq

1 � q

!(⌦)1�q.

Dropping the restriction ⌫(⌦) = 1, and recalling that d! = u

q

d�,
we obtain the desired inequality for any ⌫ 2 M+

(⌦),

Z

⌦

(K⌫)q d� 
bq

1 � q

✓

Z

⌦

u

q

d�

◆

1�q

⌫(⌦)q.
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Proof of Theorem 13
(continuation)

Remark. The proof yields that (17) holds with { =

b

(1�q)

1

q

kuk1�q

L

q

(⌦,�)

for symmetric kernels K . For (QS) kernels, we use a symmetrized
kernel K+K

⇤

2

to deduce a similar estimate where { depends also on the
quasi-symmetric constant a > 0 in condition (16).

In the next lemma, we give some su�cient/necessary conditions for
{ < 1 in (17) in terms of Lorentz spaces L

s,r
(⌦,�) with quasi-norm

kf kr

L

s,r
(⌦,�)

= s

Z 1

0

[t

s� (x 2 ⌦ : |f (x)| > t)]

r

s

dt

t

< 1.

Here L

s,s
(⌦,�) = L

s

(⌦,�) and L

s,1
(⌦,�) is the weak L

s space.
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Su�cient/necessary conditions for the (1, q)-inequality

Lemma (Quinn-Verbitsky 2018)

Let � 2 M+

(⌦) and 0 < q < 1. If K satisfies (QS) & (WMP), then

the (1, q)-weighted norm inequality (17) holds if K� 2 L

q

1�q

,q
(⌦,�).

Conversely, if (1) holds, then K� 2 L

q

1�q

(⌦,�).

Remarks. 1. The exponents q

1�q

and q are sharp: inequality (17) may fail

if K� 2 L

s,r
(⌦,�) with s =

q

1�q

and r > q, or 0 < s < q

1�q

, r > 0.

2. The condition K� 2 L

s,r
(⌦,�) with s =

q

1�q

and r < q is not
necessary.
3. Another (independent) necessary condition is

sup

x2⌦

Z

⌦

K(x, y)qd�(y) < 1.
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Necessary condition for the (1, q)-inequality

Remark. The necessity of the condition
R

⌦

(K�)
q

1�q

d� < 1 for the
existence of a nontrivial supersolution

u(x) � K(u

q

d�)(x), u 2 L

q

(⌦,�),

for (WMP)-kernels K , is immediate from Theorem 8 proved above:

Theorem 8 (Grigor’yan-Verbitsky 2020)

Suppose K is a positive kernel on ⌦ satisfying the (WMP) with constant
b > 0. Let 0 < q < 1. If u � 0 is a non-trivial supersolution, then

u(x) � b� q

1�q

(1 � q)

1

1�q

h

K�(x)
i

1

1�q

d��a.e. in ⌦.
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