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Abstract

We will use potential theory to study nonlinear elliptic equations
and inequalities with measure coe�cients and data of the type

��u = �u

q

+ µ, q 2 R\{0},

in a domain ⌦ ✓ Rn, or on a weighted Riemannian manifold M , as
well as more general equations

�divA(x,ru) = f (x, u,ru) in ⌦.

with certain quasilinear operators of p-Laplace type, and fully nonlinear
operators of k-Hessian type in place of �.

Analogous problems for integral operators with positive kernels (in
particular, Green’s kernels) will be discussed. This includes sharp
conditions for the existence of weak solutions, pointwise estimates of
positive solutions, regularity and uniqueness results.

This minicourse is based on joint work with Michael Frazier,
Alexander Grigor’yan and Yuhua Sun, and my former students Nguyen
Cong Phuc, Ben Jaye, Dat Tien Cao, Stephen Quinn, Adisak Seesanea.
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Introduction

We consider the equation

� divA(x,ru) = �u

q

+ µ in ⌦, (1)

where divA is the so-called A-Laplacian, and A : ⌦ ⇥ Rn �! Rn is a
nonlinear measurable function subject to standard growth and
monotonicity assumptions of order p 2 (1,1) discussed below.

A model example is A(·, ⇠) = ⇠ |⇠|p�2 (⇠ 2 Rn), which corresponds to
the p-Laplace operator �

p

u = div(ru |ru|p�2

). In the linear case
p = 2 we have the classical Laplace operator �u = div(ru).

If A(x, ⇠) = A(x)⇠, where A(x) (x 2 ⌦) is a linear matrix function,
then the A-Laplacian is a linear uniformly elliptic second-order di↵erential
operator Lu = div(Aru) with bounded measurable coe�cients. A
related integral equation

u = G(�u

q

) + Gµ in⌦, (2)

where G = (�L)

�1 is Green’s operator for L, with positive Green’s
kernel G on ⌦ ⇥ ⌦, will be treated below [Grigor’yan-Verbitsky 2020].
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Structural assumptions on A(x, ⇠)

Let 1 < p < 1, and let ⌦ ✓ Rn be an open set.
We assume that A : ⌦ ⇥ Rn �! Rn satisfies the following structural
assumptions:

x ! A(x, ⇠) is measurable for all ⇠ 2 Rn,

⇠ ! A(x, ⇠) is continuous for a.e. x 2 ⌦,

and there are constants 0 < ↵  � < 1, such that for a.e. x in ⌦, and
for all ⇠ in Rn,

A(x, ⇠) · ⇠ � ↵|⇠|p, |A(x, ⇠)|  �|⇠|p�1, (3)

(A(x, ⇠
1

) � A(x, ⇠
2

)) · (⇠
1

� ⇠
2

) > 0 if ⇠
1

6= ⇠
2

. (4)

If p = 2 and A(x, ⇠) = A(x)⇠ is linear, these are the usual uniform
ellipticity and essential boundedness assumptions for Lu = div(Aru).
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A-superharmonic solutions

More generally, consider the equation

� divA(x,ru) = f (x, u,ru) in ⌦. (5)

If f � 0, then the right-hand side of (5) is a nonlinear source term, and it
is natural to consider A-superharmonic solutions u to (5).
By M+

(⌦) we denote the class of (locally finite) nonnegative Radon
measures in ⌦. A nonlinear potential theory for the equation with measure
right-hand side µ 2 M+

(⌦),

� divA(x,ru) = µ, (6)

where u is A-superharmonic, was developed by [Kilpeläinen-Malý 1994].
They obtained sharp bilateral pointwise estimates of positive solutions u to
(6) in terms of Wol↵ potentials discussed below (more accurately they are
called Havin-Maz’ya-Wol↵ potentials).
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Special case: p-superharmonic functions

A function u 2 W

1,p
loc

(⌦) is called p-harmonic if it satisfies the
homogeneous equation �

p

u = 0. Every p-harmonic function has a
continuous representative which coincides with u a.e.

Then p-superharmonic functions are defined via a comparison principle:
A function u : ⌦ ! (�1,1] is said to be p-superharmonic if u

is lower semicontinuous, not identically infinite in any component of ⌦,
and, whenever D ⇢⇢ ⌦ and h 2 C(D) is p-harmonic in D, then

h  u on @D =) h  u in D.

A p-superharmonic function u � 0 does not necessarily belong to
W

1,p
loc

(⌦), but its truncates T

k

(u) = min(u, k) 2 W

1,p
loc

(⌦), 8k > 0.

In addition, T

k

(u) are supersolutions, that is,
�div(|rT

k

(u)|p�2rT

k

(u)) � 0,
in the distributional sense. The generalized gradient Du of a
p-superharmonic function u � 0 is defined by

Du = lim

k!+1
r(T

k

(u)).
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p-superharmonic functions

We note that every p-superharmonic function u has a quasi-continuous
representative, which coincides with u quasi-everywhere (q.e.), i.e.,
everywhere except for a set of p-capacity zero. We will assume that u is
always chosen this way.
Let u be p-superharmonic, and let 1  r < n

n�1

. Then |Du|p�1, and

consequently |Du|p�2

Du, belongs to L

r

loc

(⌦). This allows us to define a
nonnegative distribution ��

p

u for each p-superharmonic function u by

�h�
p

u,'i =

Z

⌦

|Du|p�2

Du · r' dx, (7)

for all ' 2 C

1
0

(⌦). Then by the Riesz representation theorem there
exists a unique Radon measure µ = µ(u) 2 M+

(⌦) so that

��

p

u = µ in ⌦. (8)

These definitions are easy to generalize to A-superharmonic functions.
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Quasilinear, fully nonlinear, nonlocal operators

For quasilinear equations and related inequalities of the type

��

p

u = � u

q

+ µ,

we distinguish between the cases:
(a) 0 < q < p � 1 (sub-natural growth) [Cao-Verbitsky 2016/17],
(b) q = p � 1 (natural growth) [Jaye-Verbitsky 2012],
[Jaye-Maz’ya-Verbitsky 2013], (c) q > p � 1 (super-natural growth)
[Phuc-Verbitsky 2006/08/21], (d) q < 0 (negative exponent)
[Grigor’yan-Verbitsky 2019].
More general operators divA(x,ru) in place of �

p

.
Fully nonlinear k-Hessian equations (k = 1, . . . , n):

F

k

[u] = � |u|q + µ,

in the class of k-convex functions u, 0 < q < k (sub-natural
growth). F

k

[u] = the sum of the k ⇥ k principal minors of D

2

u.
Nonlocal fractional Laplacian (��)

↵
2 , integral equations with

positive Green’s kernels G(x, y).
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Extensions

Consider another model equation of the type (5), namely,

� �

p

u = �
|ru|q

u

�
+ µ in ⌦. (9)

Even for � = const, this is a challenging problem. We will treat the
special case with singular natural growth in the gradient (q = p, � = 1)
and constant � > 0 [Cao-Verbitsky 2017].
In the case p = 2 and q = 0, � > 0, sharp estimates of solutions u for �
changing sign, have been obtained by [Grigor’yan-Verbitsky 2019].
Another important special case is � = 0. For p = 2 and � = const, see
[Hansson-Maz’ya-Verbitsky 1999], [Frazier-Verbitsky 2017/21]. For p 6= 2,
q = p (natural growth in the gradient) see [Jaye-Verbitsky 2012/13]. For
q 6= p, � = const, equations (9) are a subject of extensive studies
[Nguyen Cong Phuc et al. 2015/20/21].
The potential theory approach is useful in studies of other important
nonlinear equations and systems, as well as their analogues on
Riemannian manifolds [Grigor’yan-Sun-Verbitsky 2020].
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Riesz potentials

Let µ 2 M+

(Rn

). By I↵µ (0 < ↵ < n), we denote the Riesz potential
of order ↵, defined by

I↵µ(x) :=

Z

Rn

1

|x � y |n�↵
dµ(y), x 2 Rn. (10)

A necessary and su�cient condition for I↵µ 6⌘ +1 is given by
Z

Rn

1

(|y | + 1)

n�↵
dµ(y) < +1.

In this case, we actually have I↵µ 2 L

1

loc

(Rn

), so that I↵µ < +1
dx-a.e.
If dµ = f dx , where f 2 L

1

loc

(Rn

), we write I↵f in place of I↵(fdx).
The operator I↵ is a fractional integral of order ↵. This is usually
expressed in a symbolic form, justified using Fourier transforms,

I↵ = c (��)

�↵
2 ,

where c = c(↵, n) > 0 is a normalization constant.
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Wol↵ potentials

Let µ 2 M+

(Rn

). Let 0 < ↵ < n and 1 < r < 1. The nonlinear
Wol↵ potential W↵,rµ is defined by

W↵,rµ(x) :=

Z 1

0

✓
µ(B(x, ⇢))

⇢n�↵r

◆ 1

r�1

d⇢

⇢
, x 2 Rn. (11)

Here B(x, ⇢) is a Euclidean ball of radius ⇢ centered at x 2 Rn.
Notice that W↵,rµ 6⌘ +1 if and only if

Z 1

1

✓
µ(B(0, ⇢))

⇢n�↵r

◆ 1

r�1

d⇢

⇢
< +1. (12)

In the special case ↵ = 1, r = p, Wol↵ potentials W
1,p play an important

role in the theory of quasi-linear equations [Kilpeläinen-Malý 1994].
Another special case ↵ =

k

k+1

, r = k (k = 1, . . . , [n
2

]) is important for
k-Hessian equations [Labutin 2003], [Trudinger-Wang 2002].
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Riesz potentials and Wol↵ potentials

Remark. If r = 2 and 0 < ↵ < n

2

, we have

W↵,2µ(x) =
1

n�2↵ I

2↵µ(x), x 2 Rn.

Proof.

For any x 2 Rn, by Fubini’s theorem,

W↵,2µ(x) =

Z 1

0

µ(B(x, ⇢))

⇢n�2↵

d⇢

⇢

=

Z 1

0

Z

B(x,⇢)
dµ(y)

d⇢

⇢n�2↵+1

=

Z

Rn

Z 1

|x�y |

d⇢

⇢n�2↵+1

dµ(y)

=

1

n�2↵

Z

Rn

dµ(y)

|x � y |n�2↵
=

1

n�2↵ I

2↵µ(x).
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The Kilpeläinen-Malý theorem

Theorem (Kilpeläinen-Malý 1994)

Let µ 2 M+

(Rn

) and 1 < p < n. Then there exists a constant
C = C(p, n) such that

C

�1

W

1,pµ(x)  u(x)  C W

1,pµ(x), x 2 Rn, (13)

for any p-superharmonic solution of the equation

� �

p

u = µ in Rn, lim inf

x!1
u(x) = 0. (14)

In the case p � n there are no nontrivial solutions to (14) on Rn.

Remark. This fundamental theorem, along with its important
local version, holds for more general equations �Lu = µ with A-Laplace
operators L = divA(x,ru) in place of �

p

, under conditions (3), (4)
(due to the same authors). In other words, (�L)

�1µ ⇡ W

1,pµ.
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Riesz capacities and p-capacity

In the potential theory related to quasilinear equations of p-Laplace type,
the p-capacity plays a fundamental role. It is defined, for a compact set
E ⇢ ⌦ by

Cap

p

(E ,⌦) = inf

�
krukp

L

p

(⌦)

: u � 1 on E , u 2 C

1
0

(⌦)

 
. (15)

For any set E ⇢ Rn, the Riesz capacity of order (↵, r) is defined by

Cap↵, r (E) = inf

�
kf kr

L

r

(Rn

)

: I↵f � 1 on E , f � 0

 
. (16)

It is easy to see that, for ⌦ = Rn, and ↵ = 1, r = p, the Riesz capacity
is equivalent to the p-capacity,

Cap

1, p(E) ⇡ Cap

p

(E), E ⇢ Rn

compact,

where the equivalence constants depend only on p and n.
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Capacities associated with Sobolev spaces

In our study of equations (1), we also use related capacities associated
with Sobolev spaces W

↵,r
(⌦), where ↵, r may depend on p, q

[Phuc-Verbitsky 2008, 2009]. Here
The capacity associated with W

↵,r
(⌦) is defined by

cap↵, r (E ,⌦) = inf

�
kukr

W

↵, r

(Rn

)

: u � 1 on E , u 2 C

1
0

(⌦)

 
, (17)

for compact sets E ⇢ ⌦.
Here

kuk
W

↵, r

(Rn

)

= kuk
L

r

(Rn

)

+ k(��)

↵
2

uk
L

r

(Rn

)

.

By W

↵,r
0

(⌦) we denote the closure of C

1
0

(⌦) functions with respect to
the norm kuk

W

↵, r .
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Capacities associated with homogeneous Sobolev spaces

Similarly, we define capacities associated with homogeneous Sobolev
spaces ˙

W

↵,r
(⌦) (0 < ↵ < n and 1 < r < 1),

Cap↵, r (E ,⌦) = inf

�
kukr

˙

W

↵,r
(Rn

)

: u � 1 on E , u 2 C

1
0

(⌦)

 
, (18)

for compact sets E ⇢ ⌦. Here

kuk
˙

W

↵, r

(Rn

)

= k(��)

↵
2

uk
L

r

(Rn

)

.

By ˙

W

↵,r
0

(⌦) we denote the closure of C

1
0

(⌦) functions with respect to
the norm kuk

˙

W

↵, r

. In the case ⌦ = Rn, these capacities are equivalent
to Riesz capacities,

Cap↵, r (E ,Rn

) ⇡ Cap↵, r (E), E ⇢ Rn

compact.

Moreover, in the special case ↵ = 1, r = p, the p-capacity
Cap

p

(E) ⇡ Cap

1, p(E).
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Example: A sublinear problem on ⌦ = (0,1)

One-dimensional case

For 0 < q < 1, consider the homogeneous problem

� u

00
= � u

q, u � 0, in ⌦ = (0,1). (19)

Here � 2 M+

(⌦), u is a concave (“superharmonic”) function.
The Green function G(x, y) = min(x, y), and the Green potential

G�(x) =

Z
x

0

y d�(y) + x

Z 1

x

d�(y), x > 0.

A general solution u to (19) satisfies the integral equation

u(x) =

Z
x

0

y u

q

(y) d�(y) + x

Z 1

x

u

q

(y) d�(y) + ax + b. (20)

We assume u(0) = 0, lim
x!1

u(x)

x

= 0, so that a = b = 0, and

u = G(u

q

d�).

Notice that u

0
(x) =

R1
x

u

q

(y)d�(y) � 0, so u is non-decreasing.
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Example: A sublinear problem on ⌦ = (0,1)

One-dimensional case

Theorem 1 (Quinn-Verbitsky 2017)

Let 0 < q < 1 and � � 0. Any nontrivial solution to (20) satisfies

C

�1

h⇣ Z
x

0

y d�(y)
⌘ 1

1�q

+ K�(x)
i

(21)

 u(x)  C

h⇣ Z
x

0

y d�(y)
⌘ 1

1�q

+ K�(x)
i
, (22)

where K�(x) = x

⇣ R
+1
x

y

q

d�(y)
⌘ 1

1�q

, and C = C(q).

A nontrivial solution exists if and only if, for some (or all) a > 0,

Z
a

0

y d�(y) +

Z
+1

a

y

q

d�(y) < +1. (23)
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Remarks

One-dimensional case

1. We actually have u ⇡ (G�)
1

1�q

+ K� for any nontrivial solution u.
2. The lower bound holds for any nontrivial supersolution u � G(u

q

d�),
and the upper bound for any subsolution 0 < u  G(u

q

d�).

3. The lower pointwise bound u � (1 � q)

1

1�q

(G�)
1

1�q is known for a
general kernel G which satisfies the strong maximum principle

[Grigor’yan-Verbitsky 2019]; the constant (1 � q)

1

1�q is sharp. The term
K� strengthens the lower estimate, matches the upper estimate.
4. Similar pointwise estimates hold for ⌦ = (0, 1) with Green’s function
G(x, y) = min[x(1 � y), y(1 � x)]. Existence criteria in one dimension
are due to [Yong Zhang, 1994], [Zhong-li Wei, Shao-zhu Chen, 2005].
5. For the corresponding inhomogeneous problem with measures µ, �

u = G(u

q

d�) + Gµ, u � 0 in ⌦ = (0,1), (24)

we have u ⇡ (G�)
1

1�q

+ K� + Gµ [Verbitsky 2021].
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Weighted norm inequalities on ⌦ = (0,1)

One-dimensional case

Pointwise estimates in Theorem 1 are based on the following theorem.

Let ⌦ = (0,1) and 0 < q < 1. Consider the (1, q)-weighted norm
inequality [Quinn-Verbitsky 2017] (for a finite constant {),

kuk
L

q

(⌦,�)

 {
Z 1

0

|u00| dx, (25)

for all concave functions u in ⌦ with u(0) = 0, lim
x!1

u(x)

x

= 0.

Equivalently, in terms of Green’s potentials u = G⌫,

kG⌫k
L

q

(⌦,�)

 {k⌫k, (26)

for all measures ⌫ 2 M+

(⌦), where k⌫k = ⌫(⌦).
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Weighted norm inequalities on ⌦ = (0,1)

(continuation)

Theorem 2 (Quinn-Verbitsky 2017)

Let 0 < q < 1 and � � 0.
(i) The best constant { in (25) or (26) satisfies

{ =

⇣ Z
+1

0

x

q

d�(x)
⌘ 1

q

. (27)

(ii) There exists a nontrivial solution u = G(u

q

d�) to (20) such that
u

0
(0) < 1 if and only if { < 1.

Notice that we impose an additional assumption on the solution u:

u

0
(0) = ku00k =

Z 1

0

u

q

d� < 1. (28)
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General integral and di↵erential equations

Our goal is to study pointwise behavior of positive solutions to nonlinear
integral equations (and related inequalities) of the type

u(x) =

Z

⌦

G(x, y) g(u(y))d�(y) + h,

where (⌦,�) is a locally compact measure space,
G(x, y) : ⌦ ⇥ ⌦ ! (0,+1] a kernel, g : [0,1) ! [0,1) a
monotone function, h � 0 a measurable function.
Motivation: singular solutions to semilinear (fractional) Laplace problems

(��)

↵
2

u = g(u)� + µ in ⌦, u = 0 in ⌦

c ,

with measure coe�cients �, µ; g(u) = u

q , q 2 R \ {0}; 0 < ↵ < n.
Domains ⌦ ✓ Rn, or Riemannian manifolds, with positive Green’s function
G . In some cases: necessary and su�cient conditions for existence of
positive solutions. Generalizations to quasilinear and Hessian equations.
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Local case: weighted manifolds

(joint work with Alexander Grigor’yan)

Let M be a Riemannian manifold, and let ! be a smooth positive function
on M . Consider the measure m on M given by dm = !dm

0

, where m

0

is
the Riemannian measure of M . The couple (M,m) is called a
weighted manifold. Set

div! =

1

!
� div � !.

Here div and r are the divergence and the gradient operators of the
Riemannian structure of M discussed below.
The (weighted) Laplace operator L = � on (M,m) is defined by

� = div! � r

If ! = 1 then � is the Laplace-Beltrami operator denoted by L
0

.
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Weighted manifolds

(continuation)

The Laplace operator � on (M,m) satisfies the same Product Rule and
Chain Rule as the classical Laplace operator.

1. For C

2 functions u, v on M ,

� (uv) = u �v + 2hru,rvi + v �u. (29)

Here hru,rvi is the inner product of the Riemannian gradients, which is
independent of the weight !.

2. For any C

2 function � defined on u (M),

�� (u) = �0
(u)�u + �00

(u) |ru|2 . (30)
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The Laplace-Beltrami operator

If ! = 1, the Laplace-Beltrami operator L
0

= � acts on C

2 functions u

on M . It is given in any chart x

1

, ..., x
n

by the formula

L
0

u =

1

p
det g

nX

i ,j=1

@
x

i

⇣p
det g g

ij@
x

j

u

⌘

where g is the Riemannian metric, det g is the determinant of the matrix
g =

�
g

ij

�
, and

�
g

ij

�
is the inverse matrix of

�
g

ij

�
.

The Riemannian measure m

0

is given in the same chart by

dm

0

=

p
det g dx

1

. . . dx

n

.

Notice that L
0

is symmetric with respect to m

0

.
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The Laplace-Beltrami operator

(continuation)

The gradient operator r is defined by

(ru)

i

=

nX

j=1

g

ij@
x

j

u. (31)

The divergence div on vector fields F

i is defined by

divF =

1

p
det g

nX

i=1

@
x

i

⇣p
det g F

i

⌘
. (32)

In other words, L
0

is represented in the form

L
0

= div � r.
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The weighted Laplace operator

Let (M,m) be a weighted manifold with dm = ! dm

0

.

Recall that r is the Riemannian gradient and does not depend on the
weight !.

The (weighted) Laplace operator is defined by � = div! � r.

From the definitions of r and div, see (31) and (32), it follows that

�u =

1

!
div (!ru) =

1

!
p
det g

nX

i ,j=1

@
x

i

⇣
!
p
det g g

ij@
x

j

u

⌘
, (33)

acting on C

2 functions u on M .
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