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Finite energy solutions in the Sobolev space ˙W 1,2
0

(⌦)

Let ⌦ ✓ Rn, n � 2, and let µ,� 2 M+

(⌦). Let 0 < q < 1.

Definition. There exists a positive ˙

W

1,2
0

-solution u (called finite energy
solution) to the Dirichlet problem:

(
��u = � u

q

+ µ in ⌦,

u = 0 in @⌦,
(1)

if u 2 ˙

W

1,2
0

(⌦) \ L

q

loc

(⌦, d�), u � 0, and

Z

⌦

ru · r� dx =

Z

⌦

� u

q

d� +

Z

⌦

� dµ, 8� 2 C

1
0

(⌦). (2)

Here ˙

W

1,2
0

(⌦) is the homogeneous Sobolev (Dirichlet) space, that is,
the closure of C

1
0

(⌦) in the norm kruk
L

2

(⌦)

.
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Existence and uniqueness of finite energy solutions

Theorem 14 (Seesanea-Verbitsky 2020)

Let 0 < q < 1, ⌦ ✓ Rn Green domain. There exists a solution
u 2 ˙

W

1,2
0

(⌦) to the equation ��u = �u

q

+ µ if and only if

Z

⌦

(G�)
1+q

1�q

d� < +1,

Z

⌦

(Gµ) dµ < +1. (3)

Moreover, such a solution u 2 L

1+q

(⌦,�), and is unique.

In the special case ⌦ = Rn (n � 3), conditions (3) become

Z

Rn

(I

2

�)
1+q

1�q

d� < +1,

Z

Rn

(I

2

µ) dµ < +1, (4)

where I

2

� = | · |2�n ? � is the Newtonian potential of �.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 5 / 57



A crucial integral inequality: finite energy solutions

It turns out that this problem is closely related to the trace inequality

(in the non-classical case 1 + q < 2):

✓Z

⌦

|�|1+q

d�

◆ 1

1+q

 C kr�k
L

2

(⌦,dx)

, 8� 2 C

1
0

(⌦).

A capacitary characterization [Mazy’a-Netrusov 1995]:

Z �(⌦)

0

✓
t

�(�, t)

◆ 1+q

1�q

dt < +1,

�(�, t) = inf{ cap(E) : �(E) � t}; equivalent to the Green potential
condition [Seesanea-V. 2020] (for ⌦ = Rn [Cascante-Ortega-V. 2000]):

Z

⌦

(G�)
1+q

1�q

d� < +1.
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General solutions

We now focus on general (very weak) solutions to homogeneous (µ = 0)
equations (1) for 0 < q < 1. For a bounded ⌦ ⇢ Rn with C

2 boundary:

Z

⌦

�u �� dx =

Z

⌦

u

q � d�, 8� 2 C

2

0

(⌦), (5)

where u 2 L

1

(⌦, dx) \ L

q

(⌦, �
⌦

d�), is a non-trivial positive solution
(0 < u < +1 d�-a.e.) Similar definitions are known for Lipschitz ⌦.

For bounded C

2 domains, Definition (5) is equivalent to:

u(x) =

Z

⌦

G

⌦

(x, y) u

q

(y) d�(y), x 2 ⌦. (6)

For arbitrary Green domains ⌦ ✓ Rn: we use Definition (6).

Remark. We can treat non-homogeneous equations (1) with µ 6= 0 in
uniform domains ⌦ in a similar way: u = G(u

q

d�) + Gµ.
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Bounded solutions on Rn

In the case ⌦ = Rn, n � 3: G

Rn

(x, y) = c

n

|x � y |2�n, and

u = I

2

(u

q

d�) in Rn. (7)

Let U(x)

:

= I

2

�(x) denote the Newtonian potential of � 2 M+

(Rn

).

Theorem (Brezis-Kamin 1992)

Let 0 < q < 1, � 2 L

1
loc

(Rn

) (� 6= 0). There exists a nontrivial
bounded solution to equation (7) in Rn such that
lim inf |x|!+1 u(x) = 0 if and only if U 2 L

1
(R

n

). Moreover, such a
solution is unique, and satisfies the global estimates:

U(x)

1

1�q  u(x)  C U(x), x 2 Rn. (8)

Both the lower and the upper estimates in (8) are sharp in a sense.

Remark. More precise bilateral estimates use new nonlinear potentials.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 8 / 57



Extension of the Brezis-Kamin theorem
Homogeneous equations on ⌦ = Rn

Theorem 15 (Cao-Verbitsky 2016)

Let 0 < q < 1 and � 2 M+

(Rn

) (� 6= 0). Suppose for a constant C ,

�(F )  C cap(F ), 8 compact sets F ⇢ R

n. (9)

Then there exists a nontrivial solution u > 0 to (7) such that
lim inf |x|!+1 u(x) = 0, and for any solution u,

U(x)

1

1�q  u(x)  C

⇣
U(x) + U(x)

1

1�q

⌘
, x 2 Rn, (10)

provided U 6⌘ +1 (otherwise there is no solution).

Remarks. 1. Both estimates are sharp as in the Brezis-Kamin theorem.
2. The lower estimate holds for any � � 0, without (9). 3. Condition (9)
is weaker than U 2 L

1
(R

n

), and allows unbounded solutions u.
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Weak solutions on Rn: the radial case
In the radial case � depends only on r = |x| in Rn, n � 3, and

U(r) = c

n

✓
1

r

n�2

Z
r

0

t

n�1

d�(t) +

Z 1

r

t d�(t)

◆
.

Theorem 16 (Cao-Verbitsky 2016)

Let 0 < q < 1. Suppose � is radial (� 6= 0). Then (7) has a nontrivial
(radial) solution i↵

Z
1

0

t

n�1

d�(t)

t

(n�2)q

< +1, and

Z
+1

1

t d�(t) < +1.

Moreover, any solution u satisfies:

u(x) ⇡ U(r)

1

1�q

+

1

r

n�2

 Z
r

0

t

n�1

d�(t)

t

(n�2)q

! 1

1�q

.
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Weak solutions on Rn: a crucial weighted norm inequality
The problem of the existence of weak solutions to (7) is closely related to
the following integral (1, q)-inequality in the case 0 < q < 1: for all
� 2 C

2

0

(Rn

) such that � � 0, ��  0,

✓Z

Rn

�q

d�

◆ 1

q

 {
Z

Rn

|��| dx.

Equivalently, a weighted norm inequality for Newtonian potentials holds:

✓Z

Rn

(I

2

⌫)q d�

◆ 1

q

 { k⌫k, 8⌫ 2 M+

(Rn

). (11)

More generally, for the equation (��)

↵
2

u = � u

q , 0 < ↵ < n,

✓Z

Rn

(I↵⌫)
q

d�

◆ 1

q

 { k⌫k, 8⌫ 2 M+

(Rn

).

By { we will denote the least constant in these inequalities.
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Localized integral inequality

We will need a local version of the preceding inequality, where the measure
� = �

B

is restricted to a ball B in Rn:

✓Z

B

(I↵⌫)
q

d�

◆ 1

q

 {
B

⌫(Rn

), 8⌫ 2 M+

(Rn

).

The least constants {
B

, where B = B(x, r), are used to define a new
intrinsic potential K = K↵ of Wol↵ type,

K�(x) =

Z
+1

0

�
{

B(x,r)

� q

1�q

r

n�↵

dr

r

, x 2 Rn. (12)
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Main Theorem

Theorem 17 (Cao-Verbitsky 2017)

Suppose ⌦ = Rn, and 0 < q < 1. Then (7) has a nontrivial (super)
solution u such that lim inf |x|!+1 u(x) = 0 if and only if the following
condition holds:

Z
+1

1

�(B(0, r))

r

n�2

dr

r

+

Z
+1

1

�
{

B(0,r)

� q

1�q

r

n�2

dr

r

< +1. (13)

Moreover, any solution u to (7) satisfies

u(x) ⇡
⇣
I

2

�(x)
⌘ 1

1�q

+

Z
+1

0

�
{

B(x,r)

� q

1�q

r

n�2

dr

r

. (14)

Remarks. 1. The second term is the intrinsic nonlinear potential K�(x)
defined by (12) with ↵ = 2. 2. The upper estimate in (14) is proved only
for the minimal solution in [Cao-V. 2017]; for all solutions in [V. 2021].
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Existence of W 1,2
loc solutions (Sobolev regularity)

For the existence of a solution u 2 W

1,2
loc

(Rn

), an additional local version
of the condition for finite energy solutions (Theorem 14) is needed:

Z

B(0,R)

�
I

2

�
B(0,R)

� 1+q

1�q

d� < 1, 8R > 0. (15)

Theorem 18 (Cao-Verbitsky 2017)

Under the assumptions of the previous theorem, there exists a nontrivial
weak (super) solution u 2 W

1,2
loc

(Rn

) such that lim inf |x|!+1 u(x) = 0

if and only if (15) holds together with

Z
+1

1

�(B(0, r))

r

n�2

dr

r

+

Z
+1

1

�
{

B(0,r)

� q

1�q

r

n�2

dr

r

< +1.

Moreover, global pointwise estimates (14) hold.
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Wol↵ potentials

Let µ 2 M+

(Rn

). Let 0 < ↵ < n and 1 < p < 1.
The Wol↵ potential W↵,pµ (more accurately, the Havin-Maz’ya-Wol↵
potential) is defined by

W↵,pµ(x) :=

Z 1

0

✓
µ(B(x, ⇢))

⇢n�↵p

◆ 1

p�1

d⇢

⇢
, x 2 Rn. (16)

Recall that in the linear case p = 2 we have W↵,2µ = I

2↵µ.

As we will prove below, W↵,pµ 6⌘ +1 if and only if for 0 < ↵ < n

p

Z 1

1

✓
µ(B(0, ⇢))

⇢n�↵p

◆ 1

p�1

d⇢

⇢
< +1. (17)

Remarks. 1. In the special case ↵ = 1, Wol↵ potentials W
1,p play an

important role in the theory of quasilinear equations of p-Laplace type.
2. For 1 < p < 2 � ↵

n

, we may have W↵,pµ 62 L

1

loc

(Rn, dx).
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Wol↵ potential estimates

We start with some useful estimates for Wol↵ potentials.

Lemma (Wol↵ potential estimates)

Suppose 1 < p < 1, 0 < ↵ < n

p

, and � 2 M+

(Rn

). Let

s = min (1, p � 1). Then there exists a positive constant c = c(n, p,↵)

such that, for all x 2 Rn and R > 0,

c

�1

Z 1

R

✓
�(B(x, r))

r

n�↵p

◆ 1

p�1

dr

r

 inf

B(x,R)

W↵,p�


 

1

|B(x,R)|

Z

B(x,R)

[W↵,p�(y)]
s

dy

! 1

s

 c

Z 1

R

✓
�(B(x, r))

r

n�↵p

◆ 1

p�1

dr

r

.

(18)
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Wol↵ potential estimates
(continuation)

Proof: WLOG assume x = 0. We first prove the last estimate in (18).
Clearly,

1

|B(0,R)|

Z

B(0,R)

[W↵,p�(y)]
s

dy  I

1

+ I

2

,

where

I

1

=

1

|B(0,R)|

Z

B(0,R)

 Z
R

0

✓
�(B(y , r))

r

n�↵p

◆ 1

p�1

dr

r

!
s

dy ,

I

2

=

1

|B(0,R)|

Z

B(0,R)

 Z 1

R

✓
�(B(y , r))

r

n�↵p

◆ 1

p�1

dr

r

!
s

dy .

To estimate I

2

, notice that since B(y , r) ⇢ B(0, 2r) for y 2 B(0,R)

and r > R, it follows

I

2


 Z 1

R

✓
�(B(0, 2r))

r

n�↵p

◆ 1

p�1

dr

r

!
s

.
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Wol↵ potential estimates
(continuation)

To estimate I

1

, suppose first that p � 2 so that s = 1. Then using
Fubini’s theorem and Jensen’s inequality we deduce

I

1


Z

R

0

 
1

|B(0,R)|

Z

B(0,R)

�(B(y , r)) dy

! 1

p�1

dr

r

n�↵p

p�1

+1

.

Using Fubini’s theorem again, we obtain
Z

B(0,R)

�(B(y , r)) dy 
Z

B(0,2R)

|B(y , r)| d� = c

n

r

n �(B(0, 2R)).

Hence, there is a constant c = c(n, p,↵) such that

I

1

 c R

� n

p�1�(B(0, 2R))

1

p�1

Z
R

0

r

↵p

p�1

�1

dr

= c R

↵p�n

p�1 �(B(0, 2R))

1

p�1  c

Z 1

R

✓
�(B(0, 2r))

r

n�↵p

◆ 1

p�1

dr

r

.
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Wol↵ potential estimates
(continuation)

Notice that this is the same estimate we deduced for I

2

with s = 1.
Next, we estimate I

1

for p < 2 and s = p � 1. In this case, we will use
the following elementary inequality: for every R > 0,

 Z
R

0

✓
�(r)

r

�

◆ 1

p�1

dr

r

!
p�1

 c(p, �)

Z
2R

0

�(r)

r

�

dr

r

,

where � > 0, 1 < p < 2, and � is a non-decreasing function on (0,1).
By this inequality with �(r) = �(B(0, 2r)) and � = n � ↵p, we obtain:

I

1


c

|B(0,R)|

Z

B(0,R)

Z
2R

0

�(B(y , r))

r

n�↵p

dr

r

dy

 c R

�n�(B(0, 2R))

Z
2R

0

r

↵p�1

dr = c R

�n+↵p�(B(0, 2R))

 c

 Z 1

R

✓
�(B(0, 2r))

r

n�↵p

◆ 1

p�1

dr

r

!
p�1

.
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Wol↵ potential estimates
(continuation)

Combining the estimates for I

1

and I

2

, we arrive at

1

|B(0,R)|

Z

B(0,R)

(W↵,p�)
s

dy  c

 Z 1

R

✓
�(B(0, 2r))

r

n�↵p

◆ 1

p�1

dr

r

!
s

.

Making the substitution ⇢ = 2r proves the upper estimate in (18).
To prove the lower estimate of W↵,p�, letting r = 2⇢ we deduce

W↵,p�(y) � 2

� n�↵p

p�1

Z 1

R

✓
�(B(y , 2⇢))

⇢n�↵p

◆ 1

p�1

d⇢

⇢
.

For all y 2 B(0,R) and ⇢ > R, we have B(y , 2⇢) � B(0, ⇢). Hence,

inf

B(0,R)

W↵,p� � 2

� n�↵p

p�1

Z 1

R

✓
�(B(0, ⇢))

⇢n�↵p

◆ 1

p�1

d⇢

⇢
.

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 20 / 57



Wol↵ potential estimates
(continuation)

Corollary

Suppose 1 < p < 1, 0 < ↵ < n

p

, and � 2 M+

(Rn

).

(i) W↵,p� 6⌘ +1 if and only if

Z 1

1

✓
�(B(0, r))

r

n�↵p

◆ 1

p�1

dr

r

< 1. (19)

(ii) Condition (19) yields

Z 1

R

✓
�(B(x, r))

r

n�↵p

◆ 1

p�1

dr

r

< 1, 8x 2 Rn, R > 0. (20)

(iii) If (19) holds, then W↵,p� 2 L

s

loc

(dx), where s = min (1, p � 1),
and

lim inf

|x|!1
W↵,p�(x) = 0. (21)
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Wol↵’s inequality
Wol↵’s inequality was proved by Th. Wol↵ using a dyadic model of
Wol↵’s potential. It appeared in [Hedberg-Wol↵ 1983] in relation to the
spectral synthesis problem for Sobolev spaces studied by L. I. Hedberg.

Let ˙

W

�↵,p0
(Rn

) =

h
˙

W

↵,p
0

(Rn

)

i⇤
denote the dual Sobolev space, where

1

p

+

1

p

0 = 1, 0 < ↵ < n

p

. Define the (↵, p)-energy of µ 2 M+

(Rn

) by

E↵,p(µ) : =

Z

Rn

(I↵µ)
p

0
dx = kµkp

0

˙

W

�↵,p0
(Rn

)

.

Wol↵’s inequality gives bilateral estimates of E↵,p(µ) in terms of W↵,pµ.

Theorem (Hedberg-Wol↵ 1983)

Suppose 1 < p < 1, 0 < ↵ < n

p

, and µ 2 M+

(Rn

). Then there

exists a constant C = C(↵, p, n) such that

C

�1 E↵,p(µ) 
Z

Rn

W↵,pµ dµ  C E↵,p(µ). (22)
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More general A-Laplace operators

Let ⌦ ✓ Rn be an open set. Let us assume that A : ⌦ ⇥ Rn ! Rn

satisfies the following structural assumptions:

x ! A(x, ⇠) is measurable for all ⇠ 2 Rn,

⇠ ! A(x, ⇠) is continuous for a.e. x 2 ⌦,

and there are constants 0 < ↵  � < 1, such that for a.e. x 2 ⌦, and
for all ⇠ in Rn,

A(x, ⇠) · ⇠ � ↵|⇠|p, |A(x, ⇠)|  �|⇠|p�1,

(A(x, ⇠
1

) � A(x, ⇠
2

)) · (⇠
1

� ⇠
2

) > 0 if ⇠
1

6= ⇠
2

.
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A-superharmonic solutions

Let µ 2 M+

(⌦). We consider the equation

� divA(x,ru) = µ in ⌦. (23)

A nonlinear potential theory for the equation with measure right-hand side
µ 2 M+

(⌦),
� divA(x,ru) = µ, (24)

where u is A-superharmonic, was developed by [Kilpeläinen-Malý ’93/94].
They obtained bilateral pointwise estimates of solutions u � 0 to (24) in
terms of Wol↵ potentials.

Definition. A function u 2 W

1,p
loc

(⌦) is called A-harmonic if it satisfies
the homogeneous equation divA(x,ru) = 0 in the weak sense. Every
A-harmonic function has a continuous representative ũ = u a.e.
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A-superharmonic functions

Next, define A-superharmonic functions via a comparison principle:

Definition. A function u : ⌦ ! (�1,1] is A-superharmonic if
u is lower semicontinuous, not identically +1 in any component of ⌦,
and, for every open D b ⌦ and h 2 C(D), where h is A-harmonic in D,

h  u on @D =) h  u in D.

Some A-superharmonic functions u 62 W1,p
loc

(⌦). However, for u � 0,

truncates T

k

(u) = min(u, k) 2 W1,p
loc

(⌦), 8k > 0. Note that

�divA(x,rT

k

(u)) = µ
k

� 0, µ
k

2 M+

(⌦),

in the weak sense. The generalized gradient Du of an A-superharmonic
function u � 0 is defined by

Du = lim

k!+1
r(T

k

(u)).
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A-superharmonic solutions

Remark. Every A-superharmonic function u has a quasi-continuous
representative ũ = u quasi-everywhere (q.e.), that is, everywhere except
for a set of p-capacity zero. We assume that u is always chosen this way.
Moreover, u(x) = lim inf

y!x

u(y) for all x 2 ⌦.

Let u be A-superharmonic, and let 1  r < n

n�1

. Then |Du|p�1, and
consequently A(x,Du), belongs to L

r

loc

(⌦). This allows us to define a
nonnegative distribution �divA(x,Du) by

�hdivA(x,Du),'i =

Z

⌦

A(x,Du) · r' dx, (25)

for all ' 2 C

1
0

(⌦). Then by the Riesz representation theorem there
exists a unique Radon measure µ = µ(u) 2 M+

(⌦) so that

�divA(x,Du) = µ in ⌦. (26)
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Renormalized solutions

Consider the equation �divA(x,ru) = µ in ⌦, where µ 2 M+

(⌦),
and ⌦ ✓ Rn is an open set. Let us use the decomposition µ = µ

0

+ µ
s

:
µ
0

is absolutely continuous, and µ
s

is singular with respect to p-capacity.
Let T

k

(s) = max{�k,min{k, s}}.
Definition. A function u 2 L

(p�1)s

loc

(⌦, dx) for all 1  s < n

n�p

is called

a local renormalized solution if, for all k > 0, T

k

(u) 2 W

1,p
loc

(⌦),

Du 2 L

(p�1)r

loc

(⌦) for all 1  r < n

n�1

, and

Z

⌦

hA(x,Du),Dui h

0
(u)� dx +

Z

⌦

hA(x,Du),r�ih(u)� dx

=

Z

⌦

h(u)� dµ
0

+ h(+1)

Z

⌦

� dµ
s

,

for all � 2 C

1
0

(⌦), and all h 2 W

1,1
(R), h

0 is compactly supported.
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A-Laplace operators

Remarks. It is known [Kilpeläinen et al. 2011] that every
A-superhamonic solution is a local renormalized solution, and conversely,
every local renormalized solution has an A-superharmonic representative.

One can work either with local renormalized solutions, or equivalently with
A-superharmonic solutions, or finite energy solutions in the case
u 2 W

1,p
0

(⌦). For finite energy solutions, Du coincides with the
distributional gradient ru, and µ(u) is absolutely continuous with
respect to the p-capacity.

Basic facts of potential theory, including nonlinear potential estimates, and
the weak continuity principle, hold for the general A-Laplace operator
divA(x,ru) under the standard structural assumptions imposed above.

Pointwise gradient estimates for Du and BMO estimates discussed below
require some extra assumptions on A.
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The Kilpeläinen-Malý theorem (local version)

Theorem (Kilpeläinen-Malý 1994)

Let ⌦ ⇢ Rn and B(x, 2R) ⇢ ⌦. Let µ 2 M+

(⌦) and 1 < p  n.
Under the above structural assumptions on A, there exists a constant
C = C(↵,�, p, n) such that

C

�1

W

R

1,pµ(x)  u(x)

 C


inf

B(x,R)

u + W

2R

1,pµ(x)

�
,

(27)

for any A-superharmonic solution u � 0 of the equation

� divA(x,ru) = µ in ⌦. (28)

Here the truncated Wol↵ potential of µ 2 M+

(⌦) is defined by

W

R

↵,pµ(x) :=

Z
R

0

✓
µ(B(x, ⇢) \ ⌦)

⇢n�↵p

◆ 1

p�1

d⇢

⇢
, x 2 ⌦. (29)
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The Kilpeläinen-Malý theorem (global version)

Corollary (Kilpeläinen-Malý 1994)

Let µ 2 M+

(Rn

) and 1 < p < n. Under the above structural
assumptions on A(x, ⇠), there exists a constant C = C(↵,�, p, n) such
that

C

�1

W

1,pµ(x)  u(x)  C W

1,pµ(x), x 2 Rn, (30)

for any p-superharmonic solution u of the equation

� divA(x,ru) = µ in Rn, lim inf

x!1
u(x) = 0. (31)

In the case p � n there are no nontrivial solutions to (28) on Rn.

Moreover, an A-superharmonic solution u � 0 exists on Rn if and only if
W

1,pµ 6⌘ 1, that is, condition (17) holds [Phuc-Verbitsky 2008].
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Wol↵ potential estimates
(continuation)

It is easy to see that if µ 2 M+

(Rn

), and u 2 W

1,p
loc

(Rn

) is a weak

solution to the equation �divA(x,ru) = µ, then µ 2 W

�1,p0

loc

(Rn

).

The converse statement is contained in the next lemma.

Lemma

Suppose 1 < p < n, and µ 2 M+

(Rn

) \ W

�1,p0

loc

(Rn

). If u � 0 is an
A-superharmonic solution to the equation �divA(x,ru) = µ in Rn,

then u 2 W

1,p
loc

(Rn

) \ L

1

loc

(Rn, dµ).

Remark. The proof of the lemma uses Caccioppoli type inequalities and
the notion of local renormalized solutions discussed above
(see details in [Cao-Verbitsky 2017]).
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BMO solutions
It is immediate from pointwise estimates (30) of solutions u to (31) that u

is uniformly bounded on Rn if and only if W
1,pµ is uniformly bounded.

We next state recent results (joint with Nguyen Cong Phuc) on BMO
solutions u to equation (31).

Recall that BMO(Rn

) is the space of functions u of bounded mean

oscillation in Rn: u 2 L

1

loc

(Rn

), and there exists a constant C so that

1

|B|

Z

B

|u � ū

B

|dx  C ,

for all balls B in Rn, where ū

B

=

1

|B|
R
B

u dx .

We will need a class of measures µ 2 M+

(Rn

) satisfying the Frostman
type condition

µ(B(x,R))  CR

n�p, 8x 2 Rn, R > 0. (32)

Notice that cap
p

(B(x,R)) = c R

n�p where c = c(p, n).
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BMO solutions
(continuation)

Theorem 19 (Phuc-Verbitsky 2021)

Let µ 2 M+

(Rn

) and 1 < p < n. Then equation (31) has a solution
u 2 BMO(Rn

) if and only W

1,p� 6⌘ 1 and condition (32) holds, under
certain restrictions on A. Moreover, any solution u to (31) lies in
BMO(Rn

) if and only if µ satisfies (32).

Remarks. 1. If µ satisfies (32), then actually any solution u to (31)
satisfies the Morrey condition

Z

B(x,R)

|ru|sdy  C R

n�s , 8x 2 Rn, R > 0,

provided 1  s < p. This yields u 2 BMO(Rn

) by Poincaré’s inequality.
2. The case p = 2 of Theorem 13 is due to [D. Adams 1975], and p � 2

to [G. Mingione 2007] (a local version).
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Quasilinear equations with lower order terms
We next consider nontrivial solutions to quasilinear equations of the type

� divA(x,ru) = �u

q in Rn, (33)

for � 2 M+

(Rn

), under the assumption that the A-Laplace operator of
�

p

type (1 < p < +1) obeys the conditions on A imposed above.
We focus on the sub-natural growth case 0 < q < p � 1. This is an
analogue of the sublinear case 0 < q < 1 for p = 2.

We denote by U a positive solution to the equation

�divA(x,rU) = �, lim inf

x!+1
U(x) = 0.

Recall that by [Kilpeläinen-Malý 1994],

U(x) ⇡ W

1,p�(x) =

Z 1

0

✓
�(B(x, ⇢))

⇢n�p

◆ 1

p�1

d⇢

⇢
, x 2 Rn.
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Finite energy solutions

Theorem 20 (Cao-Verbitsky 2016)

Let 1 < p < n and 0 < q < p � 1. There exists a solution
u 2 ˙

W

1,p
0

(Rn

) to equation (33) if and only if

Z

Rn

U

(1+q)(p�1)

p�1�q

d� < +1. (34)

Moreover, such a solution u 2 L

1+q

(Rn,�) and is unique. There are no
nontrivial solutions on Rn if p � n.

Remark. Similar results for inhomogeneous equations
�divA(x,ru) = �u

q

+ µ hold. A necessary and su�cient condition

for u 2 ˙

W

1,p
0

(Rn

) is given in [Seesanea-V. 2017]:

Z

Rn

(W

1,p�)
(1+q)(p�1)

p�1�q

d� < +1,

Z

Rn

(W

1,pµ) dµ < +1.
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Pointwise estimates of Brezis–Kamin type

Theorem 21 (Cao-Verbitsky 2016)

Let 1 < p < n and 0 < q < p � 1. Let � be a positive measure on Rn

such that, for every compact set F ⇢ R

n,

�(F )  C cap
p

(F ).

Then there exists a positive solution u to (33) such that
lim inf

x!+1 u(x) = 0, and

C

1

U

p�1

p�1�q  u  C

2

⇣
U + U

p�1

p�1�q

⌘
,

provided U 6⌘ +1. Otherwise there are no nontrivial solutions.

Remark. For inhomogeneous equations �divA(x,ru) = �u

q

+ µ,
similar estimates hold if we add W

1,pµ to both sides [Verbitsky 2021].
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Pointwise estimates in the general case

We consider the weighted norm inequality

kW
1,p⌫k

L

q

(⌦,�)

 { k⌫k
1

p�1 , 8⌫ 2 M+

(Rn

). (35)

For B = B(x, r), let {
B

be the least constant in the localized inequality

kW
1,p⌫k

L

q

(⌦,�
B

)

 {
B

k⌫k
1

p�1 , 8⌫ 2 M+

(Rn

), (36)

Then for any nontrivial solution u to (33) we have:

u(x) ⇡ (W

1,p�(x))
p�1

p�1�q

+

Z 1

0

({
B(x,r))

q(p�1)

p�1�q

r

n�p

dr

r

. (37)

Remark. Similar estimates hold for solutions in the inhomogeneous case
�divA(x,ru) = �u

q

+ µ, with W

1,pµ on both sides [Verbitsky 2021].
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Existence of weak (renormalized) solutions

Theorem 22 (Cao-Verbitsky 2017)

Let 1 < p < n and 0 < q < p � 1. Let � 2 M+

(Rn

). Then there
exists a nontrivial (super) solution u to (33) such that
lim inf |x|!+1 u(x) = 0 if and only if the following two conditions hold:

Z 1

1

✓
�(B(0, r))

r

n�p

◆ 1

p�1

dr

r

< 1, (38)

Z 1

1

({
B(0,r))

q(p�1)

p�1�q

r

n�p

dr

r

< 1. (39)

In this case any nontrivial solution u satisfies global estimates (37).

Remark. The upper estimate in (37) is proved in [Cao-Verbitsky 2017] for
the minimal solution only. True for all solutions [Verbitsky 2021].
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Existence of W 1,p
loc solutions

If we wish to find a solution u in W

1,p
loc

(Rn

), then an additional local
version of the condition for finite energy solutions is needed:

Z

B

(W

1,p�B

)

(1+q)(p�1)

p�1�q

d� < 1, (40)

for every ball B in Rn.

Theorem 23 (Cao-Verbitsky 2017)

Under the assumptions of the previous theorem, there exists a weak
solution u 2 W

1,p
loc

(Rn

) to (33) such that lim inf |x|!+1 u(x) = 0 if and
only if conditions (38), (39) and (40) hold. Moreover, global pointwise
estimates (37) hold for all nontrivial solutions.
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Hessian equations and potential estimates
[Trudinger-Wang, 1999; Labutin 2003]
Let F

k

(k = 1, 2, . . . , n) be the k-Hessian operator defined by

F

k

[u] =

X

1i

1

<···<i

k

n

�
i

1

· · ·�
i

k

, (41)

where �
1

, . . . ,�
n

are the eigenvalues of the Hessian matrix D

2

u on Rn.
In other words, F

k

[u] is the sum of the k ⇥ k principal minors of D

2

u.
An upper semicontinuous function u : ⌦ ! [�1,1) is k-convex in ⌦ if
F

k

[q] � 0 for any quadratic polynomial q such that u � q has a local
finite maximum in ⌦. A function u 2 C

2

loc

(⌦) is k-convex i↵

F

j

[u] � 0 in ⌦, j = 1, . . . , k.

To a k-convex function u, we associate a k-Hessian measure µ such that
F

k

[u] = µ in the viscosity sense. The following pointwise estimates hold
[Labutin 2003], [Trudinger-Wang 2002] ([Phuc-Verbitsky 2008] on Rn):

u(x) ⇡ �W

2k

k+1

,k+1

µ(x), x 2 Rn.
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Hessian Equations

Here Wol↵’s potential is defined by

W

2k

k+1

,k+1

� =

Z 1

0

✓
�(B(x, r))

r

n�2k

◆ 1

k

dr

r

, x 2 Rn,

where k < n

2

. (There are no nontrivial solutions on Rn if k � n

2

.)
Consider the Hessian equation for k-convex functions u such that
lim inf |x|!+1 u(x) = 0:

F

k

[u] = � |u|q, x 2 Rn, (42)

in the sub-natural growth case 0 < q < k . Then the previous theorems
have complete analogues with Wol↵’s potential W

2k

k+1

,k+1

in place of

W

1,p for the p-Laplacian �

p

.
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Hessian equations

Theorem 24 (Cao-Verbitsky 2017)

Let 1  k < n

2

and 0 < q < k . Let � 2 M+

(Rn

), and for every
compact set F ⇢ R

n,

�(F )  C cap
k

(F ) ⇡ Cap
2k

k+1

,k+1

(F ).

Then there exists a positive solution u to (42) such that
lim inf |x|!+1 u(x) = 0, and

C

1

(W

2k

k+1

,k+1

�)
k

k�q  �u  C

2

⇣
W

2k

k+1

,k+1

� + (W

2k

k+1

,k+1

�)
k

k�q

⌘
,

provided W

2k

k+1

,k+1

� 6⌘ +1. Otherwise there are no nontrivial solutions.

Remark. There are complete analogues of the bilateral estimates by
means of nonlinear potentials defined in terms of {

B

in the general case.
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Proof of bilateral pointwise estimates

We now give a proof of bilateral pointwise estimates [Verbitsky 2021],

u(x) ⇡ (W

1,p�(x))
p�1

p�1�q

+

Z 1

0

({(B(x, r)))
q(p�1)

p�1�q

r

n�p

dr

r

+ W

1,pµ(x),

(43)

for all nontrivial solutions of the equation

� divA(x,ru) = �u

q

+ µ in Rn, lim inf

x!1
u(x) = 0, (44)

in the case 0 < q < p � 1, where µ,� 2 M+

(Rn

).

Remark. A proof of the lower estimate for all solutions, along with the
upper estimate in (43) in the case µ = 0 for the minimal solution only
was provided in [Cao-Verbitsky 2017].
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Proof of bilateral pointwise estimates
Homogeneous equations

We first consider the case µ = 0, that is, nontrivial solutions to the
homogeneous equation

� divA(x,ru) = �u

q in Rn, lim inf

x!1
u(x) = 0. (45)

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).
For simplicity, the Wol↵ potential W↵,p� will be denoted by W�, i.e.,

W�(x) =

Z 1

0


�(B(x, t))

t

n�↵p

� 1

p�1

dt

t

, x 2 Rn. (46)

We denote by { the least constant in the weighted norm inequality

kW⌫k
L

q

(Rn,d�)

 { ⌫(Rn

)

1

p�1 , 8⌫ 2 M+

(Rn

). (47)
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Intrinsic potentials
Remark. It is easy to see using the Kilpeläinen-Malý theorem that the
embedding constant { in the case ↵ = 1 is equivalent to the constant 
in the inequality

k�k
L

q

(Rn,d�)

  kdivA(x,r�)k
1

p�1 , (48)

for all A-superharmonic � � 0 which vanish at 1.

We will need a localized version of inequality (47) for �
B

= �|
B

, where B

is is a ball in Rn, and {(B) is the least constant in

kW⌫k
L

q

(Rn,d�
B

)

 {(B) ⌫(Rn

)

1

p�1 , 8⌫ 2 M+

(Rn

). (49)

The intrinsic potential of Wol↵ type K� = K↵,p,q� is defined in terms of
{(B(x, t)), the least constant in (49) with B = B(x, t):

K�(x) =

Z 1

0

2

4{(B(x, t))
q(p�1)

p�1�q

t

n�↵p

3

5

1

p�1

dt

t

, x 2 Rn. (50)
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Intrinsic potentials

It is easy to see that K� 6⌘ 1 if and only if

Z 1

a

2

4{(B(0, t))
q(p�1)

p�1�q

t

n�↵p

3

5

1

p�1

dt

t

< 1, (51)

for any (equivalently, all) a > 0, provided {(B) < 1 for all balls B.
This is similar to the condition W� 6⌘ 1, which is equivalent to

Z 1

a


�(B(0, t))

t

n�↵p

� 1

p�1

dt

t

< 1. (52)

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let us fix

� 2 M+

(Rn

). We start with some estimates of solutions to the equation

u(x) = W(u

q

d�)(x), u � 0, x 2 Rn. (53)
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Integral equations with Wol↵ potentials
Remarks. In equation (53), u < 1 d�-a.e. (or equivalently
u 2 L

q

loc

(Rn,�)), and also (53) is understood d�-a.e.

In this case, we can choose a representative ũ such that ũ = u d�-a.e.,
defined for all x 2 Rn by ũ(x) := W(u

q

d�)(x). Then clearly
ũ(x) = W(ũ

q

d�)(x) for all x 2 Rn, and ũ is a solution to (53) defined
everywhere on Rn.

We will always use such representatives, denoted simply by u, so that (53)
is considered everywhere. Our goal is to give bilateral pointwise estimates
of solutions to u(x) = W(u

q

d�)(x) for all x 2 Rn where u(x) < 1.

We also treat the corresponding subsolutions u � 0 such that

u(x)  W(u

q

d�)(x) < 1, x 2 Rn, (54)

and supersolutions u � 0 such that

W(u

q

d�)(x)  u(x) < 1, x 2 Rn, (55)

considered d�-a.e., and at every x 2 Rn where these inequalities hold.
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Integral equations with Wol↵ potentials
For any ⌫ 2 M+

(Rn

) (⌫ 6= 0) such that W⌫ 6⌘ 1, we set

�⌫(x) := W⌫(x)

✓
W[(W⌫)qd�](x)

W⌫(x)

◆ p�1

p�1�q

, x 2 Rn, (56)

where we assume that W⌫(x) < 1.
Next, for x 2 Rn, we set

�(x) := sup{�⌫(x) : ⌫ 2 M+

(Rn

), ⌫ 6= 0, W⌫(x) < 1}. (57)

Theorem 25

Any nontrivial solution u � 0 to (53) satisfies the estimates

C �(x)  u(x)  �(x), x 2 Rn, (58)

where C is a positive constant which depends only on p, q, ↵ and n.
Moreover, the upper bound in (58) holds for any subsolution u, whereas
the lower bound in (58) holds for any nontrivial supersolution u.
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Proof of Theorem 25

The proof of Theorem 25 is based on a series of lemmas.

Lemma 1

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).

Suppose u is a subsolution to (53). Then

u(x)  �(x), x 2 Rn, (59)

provided W(u

q

d�)(x) < 1. In paticular, (59) holds d�-a.e.

Proof. Setting d⌫ = u

q

d�, we see that u(x)  W⌫(x) < 1, and
consequently W⌫(x)  W[(W⌫)qd�](x). Then clearly,

�⌫(x) := W⌫(x)

✓
W[(W⌫)qd�](x)

W⌫(x)

◆ p�1

p�1�q

� W⌫(x).

I. E. Verbitsky (University of Missouri) Potential Theory and Nonlinear Equations June 2021 49 / 57



Proof of Theorem 25
Hence,

u(x)  �⌫(x), x 2 Rn,

which yields immediately (59).

Lemma 2

Let ⌫,� 2 M+

(Rn

). Then there exists a positive constant C which
depends only on p, q, ↵, and n such that

W[(W⌫)qd�](x)  C (W⌫(x))
q

p�1

⇥
h
W�(x) + (K�(x))

p�1�q

p�1

i
, x 2 Rn.

(60)

Proof. Without loss of generality we may assume that ⌫ 6= 0 and
W⌫(x) < 1. For x 2 Rn, we have

W[(W⌫)qd�](x) =

Z 1

0

"R
B(x,t)(W⌫(y))qd�(y)

t

n�↵p

# 1

p�1

dt

t

. (61)
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Proof of Theorem 25

For y 2 B(x, t), we have that B(y , r) ⇢ B(x, 2t) if 0 < r  t, and
B(y , r) ⇢ B(x, 2r) if r > t. Consequently, for y 2 B(x, t),

W⌫(y) =

Z
t

0


⌫(B(y , r))

r

n�↵p

� 1

p�1

dr

r

+

Z 1

t


⌫(B(y , r))

r

n�↵p

� 1

p�1

dr

r


Z

t

0


⌫(B(y , r) \ B(x, 2t))

r

n�↵p

� 1

p�1

dr

r

+

Z 1

t


⌫(B(x, 2r))

r

n�↵p

� 1

p�1

dr

r

 W⌫
B(x,2t)(y) + c W⌫(x), where c = 2

n�↵p

p�1 . Hence,

Z

B(x,t)
(W⌫(y))qd�(y) 

Z

B(x,t)

�
W⌫

B(x,2t)(y)
�
q

d�(y)

+ c

q

(W⌫(x))q �(B(x, t)).
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Proof of Theorem 25
Notice that by (49),

Z

B(x,t)

�
W⌫

B(x,2t)(y)
�
q

d�(y)  (B(x, t))q ⌫(B(x, 2t))
q

p�1 .

Combining the preceding estimates, we deduce
Z

B(x,t)
(W⌫(y))qd�(y)  (B(x, t))q ⌫(B(x, 2t))

q

p�1

+ c

q

(W⌫(x))q �(B(x, t)).

It follows from (61) and the preceding estimate,

W[(W⌫)qd�](x)

 c

Z 1

0

"
(B(x, t))q ⌫(B(x, 2t))

q

p�1

t

n�↵p

# 1

p�1

dt

t

+ c (W⌫(x))
q

p�1

Z 1

0


�(B(x, t))

t

n�↵p

� 1

p�1

dt

t

= c (I + II ).
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Proof of Theorem 25

By Hölder’s inequality with exponents p�1

p�1�q

and p�1

q

, we estimate

I =

Z 1

0

"
(B(x, t))q ⌫(B(x, 2t))

q

p�1

t

n�↵p

# 1

p�1

dt

t


 Z 1

0


⌫(B(x, 2t))

t

n�↵p

� 1

p�1

dt

t

! q

p�1

⇥

0

B@
Z 1

0

2

4(B(x, t))
q(p�1)

p�1�q

t

n�↵p

3

5

1

p�1

dt

t

1

CA

p�1�q

p�1

= 2

q(n�↵p)

(p�1)

2

(W⌫(x))
q

p�1

(K�(x))
p�1�q

p�1 .
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Proof of Theorem 25

Clearly,

II = (W⌫(x))
q

p�1

Z 1

0


�(B(x, t))

t

n�↵p

� 1

p�1

dt

t

= (W⌫(x))
q

p�1

W�(x).

We deduce

W[(W⌫)qd�](x)  c(I + II )

 c (W⌫(x))
q

p�1

h
W�(x) + (K�(x))

p�1�q

p�1

i
.

This completes the proof of (60).
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Proof of Theorem 25

Lemma 3

Let 1 < p < 1, 0 < ↵ < n

p

, and 0 < q < p � 1. Let � 2 M+

(Rn

).
Then there exist positive constants C

1

, C

2

which depend only on p, q, ↵
and n such that

C

1

�(x)  (W�(x))
p�1

p�1�q

+ K�(x)  C

2

�(x), (62)

where the lower estimate holds for all x 2 Rn, whereas the upper estimate
holds provided W�(x) < 1 and K�(x) < 1.
If W� 6⌘ 1 and K� 6⌘ 1, then � < 1 d�-a.e., and the upper
estimate in (62) holds d�-a.e.
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Proof of Theorem 25

Proof. To prove the upper estimate in (62), notice that, if W� 6⌘ 1 and
K� 6⌘ 1, it follows from [Cao-V. 2017], Theorem 4.8, that there exists a
(minimal) solution u to (53) such that

c

1

h
(W�(x))

p�1

p�1�q

+ K�(x)
i
 u(x)

 c

2

h
(W�(x))

p�1

p�1�q

+ K�(x)
i
, x 2 Rn,

(63)

where c

1

, c
2

are positive constants which depend only on p, q, ↵ and n.
The lower bound in (63) holds for any nontrivial supersolution u as was
shown in [Cao-V. 2017], Theorems 4.8, d�-a.e., and in fact at every
x 2 Rn where W(u

q

d�)(x)  u(x), as is clear from the proof.
For the minimal solution u, we have u(x) = W(u

q

d�)(x) < 1,
provided W�(x) < 1 and K�(x) < 1, by the upper estimate in (63).
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Proof of Theorem 25
Thus, by Lemma 1 and the lower bound in (63), we deduce

c

1

h
(W�(x))

p�1

p�1�q

+ K�(x)
i
 u(x)  �(x).

If W� 6⌘ 1 and K� 6⌘ 1, then as indicated above, there exists a
solution u to (53) such that u = W(u

q

d�) < 1 d�-a.e., and (63)
holds d�-a.e. It follows that W� < 1 and K� < 1 d�-a.e., and
hence � < 1 d�-a.e. by the lower estimate in (62) (Lemma 2). Letting
d⌫ = u

q

d�, we deduce u  �⌫  � d�-a.e., so that (62) holds
d�-a.e. as well. The proof of Lemma 3 is complete.

Proof of Theorem 25. The upper bound in (58) for any subsolution u

follows from Lemma 1, whereas the lower bound for any nontrivial
supersolution u follows from the lower bound in (63) and Lemma 3:

u(x) � c

1

h
(W�(x))

p�1

p�1�q

+ K�(x)
i
� c

1

C

1

�(x), x 2 Rn.
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